Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
STAR Protoc ; 4(4): 102745, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38039137

RESUMO

Mitochondrial morphology is an indicator of cellular health and function; however, its quantification and categorization into different subclasses is a complicated process. Here, we present a protocol for mitochondrial morphology quantification in the presence and absence of carbonyl cyanide m-chlorophenyl hydrazone stress. We describe steps for the preparation of cells for immunofluorescence microscopy, staining, and morphology quantification. The quantification protocol generates an aspect ratio that helps to categorize mitochondria into two clear subclasses. For complete details on the use and execution of this protocol, please refer to Nag et al.1.


Assuntos
Mitocôndrias , Software , Carbonil Cianeto m-Clorofenil Hidrazona/farmacologia , Mitocôndrias/fisiologia
2.
Cell Rep ; 42(8): 112895, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37498743

RESUMO

Mitochondrial morphology is regulated by the post-translational modifications of the dynamin family GTPase proteins including mitofusin 1 (MFN1), MFN2, and dynamin-related protein 1 (DRP1). Mitochondrial phosphatase phosphoglycerate mutase 5 (PGAM5) is emerging as a regulator of these post-translational modifications; however, its precise role in the regulation of mitochondrial morphology is unknown. We show that PGAM5 interacts with MFN2 and DRP1 in a stress-sensitive manner. PGAM5 regulates MFN2 phosphorylation and consequently protects it from ubiquitination and degradation. Further, phosphorylation and dephosphorylation modification of MFN2 regulates its fusion ability. Phosphorylation enhances fission and degradation, whereas dephosphorylation enhances fusion. PGAM5 dephosphorylates MFN2 to promote mitochondrial network formation. Further, using a Drosophila genetic model, we demonstrate that the MFN2 homolog Marf and dPGAM5 are in the same biological pathway. Our results identify MFN2 dephosphorylation as a regulator of mitochondrial fusion and PGAM5 as an MFN2 phosphatase.


Assuntos
GTP Fosfo-Hidrolases , Monoéster Fosfórico Hidrolases , GTP Fosfo-Hidrolases/metabolismo , Fosfoglicerato Mutase , Dinâmica Mitocondrial/genética , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Dinaminas/metabolismo
3.
Autophagy ; : 1-3, 2023 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-37179524

RESUMO

We have employed artificial intelligence to streamline the small molecule drug screening pipeline and identified the cholesterol-reducing compound probucol in the process. Probucol augmented mitophagy and prevented loss of dopaminergic neurons in flies and zebrafish challenged with mitochondrial toxins. Further dissection of the mechanism of action led to the identification of ABCA1, the target of probucol, as a mitophagy modulator. Probucol treatment regulates lipid droplet dynamics during mitophagy and ABCA1 is required for these effects. Here we will summarize the combination of in silico and cell-based screening that led us to identify and characterize probucol as a compound that enhances mitophagy and include thoughts about future directions for the topics explored in our study.Abbreviations: ABCA1: ATP binding cassette transporter protein 1; ATP: Adenosine tri-phosphate; CCCP: carbonyl cyanide m-chlorophenylhydrazone; DsRed: Discosoma red; FDA: Food and drug administration; GFP: Green fluorescent protein; LAMP: lysosome-associated membrane glycoproteins; LD: Lipid droplet; PD: Parkinson's disease; PINK: PTEN-induced kinase.

4.
PLoS Biol ; 21(3): e3001977, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36862640

RESUMO

Failures in mitophagy, a process by which damaged mitochondria are cleared, results in neurodegeneration, while enhancing mitophagy promotes the survival of dopaminergic neurons. Using an artificial intelligence platform, we employed a natural language processing approach to evaluate the semantic similarity of candidate molecules to a set of well-established mitophagy enhancers. Top candidates were screened in a cell-based mitochondrial clearance assay. Probucol, a lipid-lowering drug, was validated across several orthogonal mitophagy assays. In vivo, probucol improved survival, locomotor function, and dopaminergic neuron loss in zebrafish and fly models of mitochondrial damage. Probucol functioned independently of PINK1/Parkin, but its effects on mitophagy and in vivo depended on ABCA1, which negatively regulated mitophagy following mitochondrial damage. Autophagosome and lysosomal markers were elevated by probucol treatment in addition to increased contact between lipid droplets (LDs) and mitochondria. Conversely, LD expansion, which occurs following mitochondrial damage, was suppressed by probucol and probucol-mediated mitophagy enhancement required LDs. Probucol-mediated LD dynamics changes may prime the cell for a more efficient mitophagic response to mitochondrial damage.


Assuntos
Gotículas Lipídicas , Probucol , Animais , Probucol/farmacologia , Inteligência Artificial , Mitofagia , Peixe-Zebra
5.
Autophagy ; 19(7): 2094-2110, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36708254

RESUMO

Mitochondrial impairment is a hallmark feature of neurodegenerative disorders, such as Parkinson disease, and PRKN/parkin-mediated mitophagy serves to remove unhealthy mitochondria from cells. Notably, probiotics are used to alleviate several symptoms of Parkinson disease including impaired locomotion and neurodegeneration in preclinical studies and constipation in clinical trials. There is some evidence to suggest that probiotics can modulate mitochondrial quality control pathways. In this study, we screened 49 probiotic strains and tested distinct stages of mitophagy to determine whether probiotic treatment could upregulate mitophagy in cells undergoing mitochondrial stress. We found two probiotics, Saccharomyces boulardii and Lactococcus lactis, that upregulated mitochondrial PRKN recruitment, phospho-ubiquitination, and MFN degradation in our cellular assays. Administration of these strains to Drosophila that were exposed to paraquat, a mitochondrial toxin, resulted in improved longevity and motor function. Further, we directly observed increased lysosomal degradation of dysfunctional mitochondria in the treated Drosophila brains. These effects were replicated in vitro and in vivo with supra-physiological concentrations of exogenous soluble factors that are released by probiotics in cultures grown under laboratory conditions. We identified methyl-isoquinoline-6-carboxylate as one candidate molecule, which upregulates mitochondrial PRKN recruitment, phospho-ubiquitination, MFN degradation, and lysosomal degradation of damaged mitochondria. Addition of methyl-isoquinoline-6-carboxylate to the fly food restored motor function to paraquat-treated Drosophila. These data suggest a novel mechanism that is facilitated by probiotics to stimulate mitophagy through a PRKN-dependent pathway, which could explain the potential therapeutic benefit of probiotic administration to patients with Parkinson disease.


Assuntos
Lactococcus lactis , Doença de Parkinson , Saccharomyces boulardii , Animais , Mitofagia , Lactococcus lactis/metabolismo , Saccharomyces boulardii/metabolismo , Proteínas Quinases/metabolismo , Autofagia , Paraquat , Ubiquitina-Proteína Ligases/metabolismo , Drosophila/metabolismo
6.
Autophagy ; 19(6): 1781-1802, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36541703

RESUMO

Peroxisomes are rapidly degraded during amino acid and oxygen deprivation by a type of selective autophagy called pexophagy. However, how damaged peroxisomes are detected and removed from the cell is poorly understood. Recent studies suggest that the peroxisomal matrix protein import machinery may serve double duty as a quality control machinery, where they are directly involved in activating pexophagy. Here, we explored whether any matrix import factors are required to prevent pexophagy, such that their loss designates peroxisomes for degradation. Using gene editing and quantitative fluorescence microscopy on culture cells and a zebrafish model system, we found that PEX13, a component of the peroxisomal matrix import system, is required to prevent the degradation of otherwise healthy peroxisomes. The loss of PEX13 caused an accumulation of ubiquitinated PEX5 on peroxisomes and an increase in peroxisome-dependent reactive oxygen species that coalesce to induce pexophagy. We also found that PEX13 protein level is downregulated to aid in the induction of pexophagy during amino acid starvation. Together, our study points to PEX13 as a novel pexophagy regulator that is modulated to maintain peroxisome homeostasis.Abbreviations: AAA ATPases: ATPases associated with diverse cellular activities; ABCD3: ATP binding cassette subfamily D member; 3ACOX1: acyl-CoA oxidase; 1ACTA1: actin alpha 1, skeletal muscle; ACTB: actin beta; ATG5: autophagy related 5; ATG7: autophagy related 7; ATG12: autophagy related 12; ATG16L1: autophagy related 16 like 1; CAT: catalase; CQ: chloroquine; Dpf: days post fertilization: FBS: fetal bovine serum; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; H2O2: hydrogen peroxide; HA - human influenza hemagglutinin; HBSS: Hanks' Balanced Salt Solution; HCQ; hydroxychloroquine; KANL: lysine alanine asparagine leucine; KO: knockout; MAP1LC3B: microtubule associated protein 1 light chain 3 beta; MEF: mouse embryonic fibroblast; MTOR: mechanistic target of rapamycin kinase; MTORC1: mechanistic target of rapamycin kinase complex 1; MTORC2: mechanistic target of rapamycin kinase complex 2; MYC: MYC proto-oncogene, bHLH transcription factor; MZ: maternal and zygotic; NAC: N-acetyl cysteine; NBR1 - NBR1 autophagy cargo receptor; PBD: peroxisome biogenesis disorder; PBS: phosphate-buffered saline; PEX: peroxisomal biogenesis factor; PTS1: peroxisome targeting sequence 1; RFP: red fluorescent protein; ROS: reactive oxygen speciess; iRNA: short interfering RNA; SKL: serine lysine leucine; SLC25A17/PMP34: solute carrier family 25 member 17; Ub: ubiquitin; USP30: ubiquitin specific peptidase 30.


Assuntos
Autofagia , Macroautofagia , Animais , Humanos , Camundongos , Autofagia/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Leucina/metabolismo , Lisina/metabolismo , Actinas/metabolismo , Peixe-Zebra/metabolismo , Fibroblastos/metabolismo , Ubiquitina/metabolismo , Peroxissomos/metabolismo , Aminoácidos/metabolismo , Oxigênio/metabolismo , Sirolimo , Proteínas de Membrana/metabolismo
8.
Proc Natl Acad Sci U S A ; 116(33): 16454-16462, 2019 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-31266891

RESUMO

The programmed release of apoptogenic proteins from mitochondria is a core event of apoptosis, although ancestral roles of this phenomenon are not known. In mammals, one such apoptogenic protein is Endonuclease G (EndoG), a conserved mitochondrial nuclease that fragments the DNA of dying cells. In this work, we show that budding yeast executes meiotically programmed mitochondrial release of an EndoG homolog, Nuc1, during sporulation. In contrast to EndoG's ostensible pro-death function during apoptosis, Nuc1 mitochondrial release is pro-survival, attenuating the cytosolic L-A and Killer double-stranded RNA mycoviruses and protecting meiotic progeny from the catastrophic consequences of their derepression. The protective viral attenuation role of this pathway illuminates a primordial role for mitochondrial release of EndoG, and perhaps of apoptosis itself.


Assuntos
Apoptose/genética , Endonucleases/genética , Exonucleases/genética , Meiose/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomycetales/genética , Animais , Endodesoxirribonucleases/genética , Mamíferos , Mitocôndrias/enzimologia , Mitocôndrias/genética , Saccharomycetales/crescimento & desenvolvimento , Saccharomycetales/virologia , Esporos Fúngicos/genética , Esporos Fúngicos/crescimento & desenvolvimento
9.
Mol Cell Oncol ; 6(3): 1600350, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131315

RESUMO

In our recent publication, we describe a mechanism by which peroxisomes are protected from degradation by autophagy under basal conditions. Taking a page from mitophagy, peroxisomes also recruit the mitochondria deubiquitinating enzyme USP30 to counter the action of PEX2, the peroxisomal E3 ubiquitin ligase to regulate pexophagy.

10.
J Cell Biol ; 218(3): 798-807, 2019 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-30700497

RESUMO

The regulation of organelle abundance is critical for cell function and survival; however, the mechanisms responsible are not fully understood. In this study, we characterize a role of the deubiquitinating enzyme USP30 in peroxisome maintenance. Peroxisomes are highly dynamic, changing in abundance in response to metabolic stress. In our recent study identifying the role of USP30 in mitophagy, we observed USP30 to be localized to punctate structures resembling peroxisomes. We report here that USP30, best known as a mitophagy regulator, is also necessary for regulating pexophagy, the selective autophagic degradation of peroxisomes. We find that overexpressing USP30 prevents pexophagy during amino acid starvation, and its depletion results in pexophagy induction under basal conditions. We demonstrate that USP30 prevents pexophagy by counteracting the action of the peroxisomal E3 ubiquitin ligase PEX2. Finally, we show that USP30 can rescue the peroxisome loss observed in some disease-causing peroxisome mutations, pointing to a potential therapeutic target.


Assuntos
Proteínas Mitocondriais/metabolismo , Mitofagia , Peroxissomos/metabolismo , Estresse Fisiológico , Tioléster Hidrolases/metabolismo , Animais , Células COS , Chlorocebus aethiops , Células HeLa , Humanos , Camundongos , Proteínas Mitocondriais/genética , Mutação , Fator 2 da Biogênese de Peroxissomos/genética , Fator 2 da Biogênese de Peroxissomos/metabolismo , Peroxissomos/genética , Tioléster Hidrolases/genética
11.
Biochim Biophys Acta Mol Cell Biol Lipids ; 1863(4): 447-457, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29343430

RESUMO

The mitochondrial glycerophospholipid cardiolipin plays important roles in mitochondrial biology. Most notably, cardiolipin directly binds to mitochondrial proteins and helps assemble and stabilize mitochondrial multi-protein complexes. Despite their importance for mitochondrial health, how the proteins involved in cardiolipin biosynthesis are organized and embedded in mitochondrial membranes has not been investigated in detail. Here we show that human PGS1 and CLS1 are constituents of large protein complexes. We show that PGS1 forms oligomers and associates with CLS1 and PTPMT1. Using super-resolution microscopy, we observed well-organized nanoscale structures formed by PGS1. Together with the observation that cardiolipin and CLS1 are not required for PGS1 to assemble in the complex we predict the presence of a PGS1-centered cardiolipin-synthesizing scaffold within the mitochondrial inner membrane. Using an unbiased proteomic approach we found that PGS1 and CLS1 interact with multiple cardiolipin-binding mitochondrial membrane proteins, including prohibitins, stomatin-like protein 2 and the MICOS components MIC60 and MIC19. We further mapped the protein-protein interaction sites between PGS1 and itself, CLS1, MIC60 and PHB. Overall, this study provides evidence for the presence of a cardiolipin synthesis structure that transiently interacts with cardiolipin-dependent protein complexes.


Assuntos
Cardiolipinas/biossíntese , Cardiolipinas/metabolismo , Proteínas de Membrana/metabolismo , Complexos Multienzimáticos/metabolismo , Detergentes/farmacologia , Células HEK293 , Humanos , Imunoprecipitação , Microscopia , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Membranas Mitocondriais/efeitos dos fármacos , Membranas Mitocondriais/metabolismo , Proibitinas , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos
12.
Cell Chem Biol ; 24(12): 1431-1433, 2017 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-29272699

RESUMO

In this issue of Cell Chemical Biology, Tichá et al. (2017) report a novel class of highly potent and selective rhomboid inhibitors. Rhomboids are implicated in several devastating human afflictions including malaria, diabetes, cancer, and Parkinson's disease (PD), making them important drug targets for future therapeutics.


Assuntos
Endopeptidases , Peptídeo Hidrolases , Humanos
13.
Cell Rep ; 18(6): 1458-1472, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28178523

RESUMO

Mitochondrial quality control (MQC) systems are essential for mitochondrial health and normal cellular function. Dysfunction of MQC is emerging as a central mechanism for the pathogenesis of various diseases, including Parkinson's disease. The mammalian mitochondrial rhomboid protease, PARL, has been proposed as a regulator of PINK1/PARKIN-mediated mitophagy, which is an essential component of MQC. PARL undergoes an N-terminal autocatalytic cleavage (ß cleavage), which is required for efficient mitophagy. We demonstrate that ß cleavage responds to mitochondrial stress, triggered by the depletion of mitochondrial ATP. Furthermore, we show that PDK2, a key regulator in metabolic plasticity, phosphorylates PARL and regulates ß cleavage. Through regulating ß cleavage and the production of a less active enzyme, PACT, PDK2 negatively regulates PINK1/PARKIN-mediated mitophagy. Taken together, we propose that PDK2/PARL senses defects in mitochondrial bioenergetics, integrating mitochondrial metabolism to mitophagy and MQC in human health and disease.


Assuntos
Metaloproteases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Linhagem Celular , Linhagem Celular Tumoral , Metabolismo Energético/fisiologia , Células HEK293 , Células HeLa , Humanos , Camundongos , Mitofagia/fisiologia , Piruvato Desidrogenase Quinase de Transferência de Acetil , Ubiquitina-Proteína Ligases
14.
Autophagy ; 11(4): 595-606, 2015 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-25915564

RESUMO

The selective degradation of mitochondria by the process of autophagy, termed mitophagy, is one of the major mechanisms of mitochondrial quality control. The best-studied mitophagy pathway is the one mediated by PINK1 and PARK2/Parkin. From recent studies it has become clear that ubiquitin-ligation plays a pivotal role and most of the focus has been on the role of ubiquitination of mitochondrial proteins in mitophagy. Even though ubiquitination is a reversible process, very little is known about the role of deubiquitinating enzymes (DUBs) in mitophagy. Here, we report that 2 mitochondrial DUBs, USP30 and USP35, regulate PARK2-mediated mitophagy. We show that USP30 and USP35 can delay PARK2-mediated mitophagy using a quantitative mitophagy assay. Furthermore, we show that USP30 delays mitophagy by delaying PARK2 recruitment to the mitochondria during mitophagy. USP35 does not delay PARK2 recruitment, suggesting that it regulates mitophagy through an alternative mechanism. Interestingly, USP35 only associates with polarized mitochondria, and rapidly translocates to the cytosol during CCCP-induced mitophagy. It is clear that PARK2-mediated mitophagy is regulated at many steps in this important quality control pathway. Taken together, these findings demonstrate an important role of mitochondrial-associated DUBs in mitophagy. Because defects in mitochondria quality control are implicated in many neurodegenerative disorders, our study provides clear rationales for the design and development of drugs for the therapeutic treatment of neurodegenerative diseases such as Parkinson and Alzheimer diseases.


Assuntos
Autofagia/fisiologia , Endopeptidases/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Tioléster Hidrolases/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/fisiologia , Citosol/metabolismo , Humanos , Ubiquitina/metabolismo
15.
J Mol Biol ; 427(16): 2599-609, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-25784211

RESUMO

Large GTPases of the dynamin superfamily promote membrane fusion and division, processes that are crucial for intracellular trafficking and organellar dynamics. To promote membrane scission, dynamin proteins polymerize, wrap around, and constrict the membrane; however, the mechanism underlying their role in membrane fusion remains unclear. We previously reported that the mitochondrial dynamin-related protein mitochondrial genome maintenance 1 (Mgm1) mediates fusion by first tethering opposing membranes and then undergoing a nucleotide-dependent structural transition. However, it is still unclear how Mgm1 directly affects the membrane to drive fusion of tethered membranes. Here, we show that Mgm1 association with the membrane alters the topography of the membrane, promoting local membrane bending. We also demonstrate that Mgm1 creates membrane ruffles resulting in the formation of tubular structures on both supported lipid bilayers and liposomes. These data suggest that Mgm1 membrane interactions impose a mechanical force on the membrane to overcome the hydrophilic repulsion of the phospholipid head groups and initiate the fusion reaction. The work reported here provides new insights into a possible mechanism of Mgm1-driven mitochondrial membrane fusion and sheds light into how members of the dynamin superfamily function as fusion molecules.


Assuntos
Membrana Celular/fisiologia , Proteínas de Ligação ao GTP/metabolismo , Metabolismo dos Lipídeos/fisiologia , Fusão de Membrana/fisiologia , Dinâmica Mitocondrial/fisiologia , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Comunicação Celular/fisiologia , Cristalografia por Raios X , Dinaminas/metabolismo , GTP Fosfo-Hidrolases , Guanosina Trifosfato/metabolismo , Humanos , Lipossomos/metabolismo , Mitocôndrias/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Cell ; 158(6): 1293-1308, 2014 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-25215488

RESUMO

Fat (Ft) cadherins are enormous cell adhesion molecules that function at the cell surface to regulate the tumor-suppressive Hippo signaling pathway and planar cell polarity (PCP) tissue organization. Mutations in Ft cadherins are found in a variety of tumors, and it is presumed that this is due to defects in either Hippo signaling or PCP. Here, we show Drosophila Ft functions in mitochondria to directly regulate mitochondrial electron transport chain integrity and promote oxidative phosphorylation. Proteolytic cleavage releases a soluble 68 kDa fragment (Ft(mito)) that is imported into mitochondria. Ft(mito) binds directly to NADH dehydrogenase ubiquinone flavoprotein 2 (Ndufv2), a core component of complex I, stabilizing the holoenzyme. Loss of Ft leads to loss of complex I activity, increases in reactive oxygen species, and a switch to aerobic glycolysis. Defects in mitochondrial activity in ft mutants are independent of Hippo and PCP signaling and are reminiscent of the Warburg effect.


Assuntos
Caderinas/metabolismo , Moléculas de Adesão Celular/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Mitocôndrias/metabolismo , Sequência de Aminoácidos , Animais , Moléculas de Adesão Celular/química , Polaridade Celular , Proteínas de Drosophila/química , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/metabolismo , Olho/crescimento & desenvolvimento , Genes Supressores de Tumor , Humanos , MAP Quinase Quinase 4/metabolismo , Dados de Sequência Molecular , Transporte Proteico , Espécies Reativas de Oxigênio/metabolismo , Asas de Animais/crescimento & desenvolvimento
17.
Biochim Biophys Acta ; 1828(12): 2916-25, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24099009

RESUMO

The Rhomboid proteases belong to a highly conserved family of proteins that are present in all branches of life. In Drosophila, the secretory pathway-localized rhomboid proteases are crucial for epidermal growth factor (EGF) signaling. The identification of a mitochondrial-localized rhomboid protease shed light on other functions of rhomboid proteases including the maintenance of mitochondrial morphology and the regulation of apoptosis. More recent work has revealed other functions of the mitochondrial rhomboid protease in mitochondrial and cellular biology, failure of which have been implicated in human diseases. In this review, we will summarize the current knowledge and disease relevance of the mitochondrial-localized rhomboid protease. This article is part of a Special Issue entitled: Intramembrane Proteases.


Assuntos
Diabetes Mellitus Tipo 2/enzimologia , Metaloproteases/metabolismo , Mitocôndrias/enzimologia , Proteínas Mitocondriais/metabolismo , Doença de Parkinson/enzimologia , Transdução de Sinais , Animais , Apoptose , Sequência Conservada , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/enzimologia , Drosophila melanogaster/genética , Regulação da Expressão Gênica , Humanos , Metaloproteases/genética , Mitocôndrias/genética , Proteínas Mitocondriais/genética , Doença de Parkinson/genética , Doença de Parkinson/patologia , Proteólise , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Estresse Fisiológico
18.
J Biol Chem ; 287(48): 40131-9, 2012 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-23045528

RESUMO

BACKGROUND: Phosphatidylethanolamine is proposed to regulate mitochondrial fusion, but its mechanism of action is unknown. RESULTS: Decreasing phosphatidylethanolamine reduces the rate of lipid mixing and the biogenesis of Mgm1, a mitochondrial fusion protein. CONCLUSION: Psd1 regulates the lipid and protein machineries of mitochondrial fusion. SIGNIFICANCE: Understanding how lipid metabolism regulates mitochondrial dynamics will reveal its role in cellular functions such as apoptosis and autophagy. Non-bilayer-forming lipids such as cardiolipin, phosphatidic acid, and phosphatidylethanolamine (PE) are proposed to generate negative membrane curvature, promoting membrane fusion. However, the mechanism by which lipids regulate mitochondrial fusion remains poorly understood. Here, we show that mitochondrial-localized Psd1, the key yeast enzyme that synthesizes PE, is required for proper mitochondrial morphology and fusion. Yeast cells lacking Psd1 exhibit fragmented and aggregated mitochondria with impaired mitochondrial fusion during mating. More importantly, we demonstrate that a reduction in PE reduces the rate of lipid mixing during fusion of liposomes with lipid compositions reflecting the mitochondrial membrane. This suggests that the mitochondrial fusion defect in the Δpsd1 strain could be due to the altered biophysical properties of the mitochondrial membrane, resulting in reduced fusion kinetics. The Δpsd1 strain also has impaired mitochondrial activity such as oxidative phosphorylation and reduced mitochondrial ATP levels which are due to a reduction in mitochondrial PE. The loss of Psd1 also impairs the biogenesis of s-Mgm1, a protein essential for mitochondrial fusion, further exacerbating the mitochondrial fusion defect of the Δpsd1 strain. Increasing s-Mgm1 levels in Δpsd1 cells markedly reduced mitochondrial aggregation. Our results demonstrate that mitochondrial PE regulates mitochondrial fusion by regulating the biophysical properties of the mitochondrial membrane and by enhancing the biogenesis of s-Mgm1. While several proteins are required to orchestrate the intricate process of membrane fusion, we propose that specific phospholipids of the mitochondrial membrane promote fusion by enhancing lipid mixing kinetics and by regulating the action of profusion proteins.


Assuntos
Carboxiliases/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Mitocôndrias/enzimologia , Dinâmica Mitocondrial , Proteínas Mitocondriais/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Carboxiliases/genética , Proteínas de Ligação ao GTP/genética , Mitocôndrias/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Membranas Mitocondriais/química , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
19.
J Biol Chem ; 287(44): 36634-8, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22977249

RESUMO

Cellular membrane remodeling events such as mitochondrial dynamics, vesicle budding, and cell division rely on the large GTPases of the dynamin superfamily. Dynamins have long been characterized as fission molecules; however, how they mediate membrane fusion is largely unknown. Here we have characterized by cryo-electron microscopy and in vitro liposome fusion assays how the mitochondrial dynamin Mgm1 may mediate membrane fusion. Using cryo-EM, we first demonstrate that the Mgm1 complex is able to tether opposing membranes to a gap of ∼15 nm, the size of mitochondrial cristae folds. We further show that the Mgm1 oligomer undergoes a dramatic GTP-dependent conformational change suggesting that s-Mgm1 interactions could overcome repelling forces at fusion sites and that ultrastructural changes could promote the fusion of opposing membranes. Together our findings provide mechanistic details of the two known in vivo functions of Mgm1, membrane fusion and cristae maintenance, and more generally shed light onto how dynamins may function as fusion proteins.


Assuntos
Proteínas de Ligação ao GTP/fisiologia , Guanosina Trifosfato/metabolismo , Fusão de Membrana , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Cristalografia , Análise de Fourier , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Humanos , Lipossomos/química , Lipossomos/metabolismo , Lipossomos/ultraestrutura , Membranas Mitocondriais/química , Membranas Mitocondriais/ultraestrutura , Proteínas Mitocondriais/química , Proteínas Mitocondriais/metabolismo , Fosfatidilserinas/química , Fosfatidilserinas/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Quaternária de Proteína , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
20.
Autophagy ; 8(10): 1462-76, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22889933

RESUMO

Reactive oxygen species (ROS) have been implicated as a signal for general autophagy. Both mitochondrial-produced and exogenous ROS induce autophagosome formation. However, it is unclear whether ROS are required for the selective autophagic degradation of mitochondria, a process called mitophagy. Recent work using carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial-uncoupling reagent, has been shown to induce mitophagy. However, CCCP treatment may not be biologically relevant since it causes the depolarization of the entire mitochondrial network. Since mitochondria are the main ROS production sites in mammalian cells, we propose that short bursts of ROS produced within mitochondria may be involved in the signaling for mitophagy. To test this hypothesis, we induced an acute burst of ROS within mitochondria using a mitochondrial-targeted photosensitizer, mitochondrial KillerRed (mtKR). Using mtKR, we increased ROS levels in the mitochondrial matrix, which resulted in the loss of membrane potential and the subsequent activation of PARK2-dependent mitophagy. Importantly, we showed that overexpression of the mitochondrial antioxidant protein, superoxide dismutase-2, can squelch mtKR-induced mitophagy, demonstrating that mitochondrial ROS are responsible for mitophagy activation. Using this assay, we examined the impact of mitochondrial morphology on mitophagy. It was shown recently that elongated mitochondria are more resistant to mitophagy through unknown mechanisms. Here, we show that elongated mitochondria are more resistant to ROS-induced damage and mitophagy compared with fragmented mitochondria, suggesting that mitochondrial morphology has an important role in regulating ROS and mitophagy. Together, our results suggest that ROS-induced mitochondrial damage may be an important upstream activator of mitophagy.


Assuntos
Autofagia , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitofagia , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Células HeLa , Humanos , Fotodegradação , Superóxido Dismutase/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...