Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38758056

RESUMO

OBJECTIVE: Identification of biomarkers of cognitive recovery after traumatic brain injury (TBI) will inform care and improve outcomes. This study assessed the utility of neurofilament (NF-L and pNF-H), a marker of neuronal injury, informing cognitive performance following moderate-to-severe TBI (msTBI). SETTING: Level 1 trauma center and outpatient via postdischarge follow-up. PARTICIPANTS: N = 94. Inclusion criteria: Glasgow Coma Scale score less than 13 or 13-15 with clinical evidence of moderate-to-severe injury traumatic brain injury on clinical imaging. Exclusion criteria: neurodegenerative condition, brain death within 3 days after injury. DESIGN: Prospective observational study. Blood samples were collected at several time points post-injury. Cognitive testing was completed at 6 months post-injury. MAIN MEASURES: Serum NF-L (Human Neurology 4-Plex B) pNF-H (SR-X) as measured by SIMOA Quanterix assay. Divided into 3 categorical time points at days post-injury (DPI): 0-15 DPI, 16-90 DPI, and >90 DPI. Cognitive composite comprised executive functioning measures derived from 3 standardized neuropsychological tests (eg, Delis-Kaplan Executive Function System: Verbal Fluency, California Verbal Learning Test, Second Edition, Wechsler Adult Intelligence Scale, Third Edition). RESULTS: pNF-H at 16-90 DPI was associated with cognitive outcomes including a cognitive-executive composite score at 6 months (ß = -.430, t34 = -3.190, P = .003). CONCLUSIONS: Results suggest that "subacute" elevation of serum pNF-H levels may be associated with protracted/poor cognitive recovery from msTBI and may be a target for intervention. Interpretation is limited by small sample size and including only those who were able to complete cognitive testing.

2.
J Neurotrauma ; 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38588256

RESUMO

Neurofilament-light chain (NF-L) and phosphorylated neurofilament-heavy chain (pNF-H) are axonal proteins that have been reported as potential diagnostic and prognostic biomarkers in traumatic brain injury (TBI). However, detailed temporal profiles for these proteins in blood, and interrelationships in the acute and chronic time periods post-TBI have not been established. Our objectives were: 1) to characterize acute-to-chronic serum NF-L and pNF-H profiles after moderate-severe TBI, as well as acute cerebrospinal fluid (CSF) levels; 2) to evaluate CSF and serum NF-L and pNF-H associations with each other; and 3) to assess biomarker associations with global patient outcome using both the Glasgow Outcome Scale-Extended (GOS-E) and Disability Rating Scale (DRS). In this multi-cohort study, we measured serum and CSF NF-L and pNF-H levels in samples collected from two clinical cohorts (University of Pittsburgh [UPITT] and Baylor College of Medicine [BCM]) of individuals with moderate-severe TBI. The UPITT cohort includes 279 subjects from an observational cohort study; we obtained serum (n = 277 unique subjects) and CSF (n = 95 unique subjects) daily for 1 week, and serum every 2 weeks for 6 months. The BCM cohort included 103 subjects from a previous randomized clinical trial of erythropoietin and blood transfusion threshold after severe TBI, which showed no effect on neurological outcome between treatment arms; serum (n = 99 unique subjects) and CSF (n = 54 unique subjects) NF-L and pNF-H levels were measured at least daily during Days (D) 0-10 post-injury. GOS-E and DRS were assessed at 6 months (both cohorts) and 12 months (UPITT cohort only). Results show serum NF-L and pNF-H gradually rise during the first 10 days and peak at D20-30 post-injury. In the UPITT cohort, acute (D0-6) NF-L and pNF-H levels correlate within CSF and serum (Spearman r = 0.44-0.48; p < 0.05). In the UPITT cohort, acute NF-L CSF and serum levels, as well as chronic (Months [M]2-6) serum NF-L levels, were higher among individuals with unfavorable GOS-E and worse DRS at 12 months (p < 0.05, all comparisons). In the BCM cohort, higher acute serum NF-L levels were also associated with unfavorable GOS-E. Higher pNF-H serum concentrations (D0-6 and M2-6), but not CSF pNF-H, were associated with unfavorable GOS-E and worse DRS (p < 0.05, all comparisons) in the UPITT cohort. Relationships between biomarker levels and favorable outcome persisted after controlling for age, sex, and Glasgow Coma Scale. This study shows for the first time that serum levels of NF-L and pNF-H peak at D20-30 post-TBI. Serum NF-L levels, and to a lesser extent pNF-H levels, are robustly associated with global patient outcomes and disability after moderate-severe TBI. Further studies on clinical utility as prognosis and treatment-response indicators are needed.

3.
J Neurotrauma ; 41(1-2): 73-90, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37489296

RESUMO

In patients with traumatic brain injury (TBI), serum biomarkers may have utility in assessing the evolution of secondary brain injury. A panel of nine brain-injury- associated biomarkers was measured in archived serum samples over 10 days post-injury from 100 patients with moderate-severe TBI. Among the biomarkers evaluated, serum glial fibrillary acidic protein (GFAP) had the strongest associations with summary measures of acute pathophysiology, including intracranial pressure (ICP), cerebral perfusion pressure (CPP), and brain tissue pO2 (PbtO2). Group based trajectory (TRAJ) analysis was used to identify three distinct GFAP subgroups. The low TRAJ group (n = 23) had peak levels of 9.4 + 1.2 ng/mL that declined rapidly. The middle TRAJ group (n = 48) had higher peak values (31.5 + 5.0 ng/mL) and a slower decline over time. The high TRAJ group (n = 26) had very high, sustained peak values (59.6 + 12.5 ng/mL) that even rose among some patients over 10 days. Patients in the high TRAJ group had significantly higher mortality rate than patients in low and middle TRAJ groups (26.9% vs. 7.0%, p = 0.028). The frequency of poor neurological outcome (Glasgow Outcome Score Extended [GOS-E] 1-4) was 88.5% in the high TRAJ group, 54.2% in the middle TRAJ group, and 30.4% in the low TRAJ group (p < 0.001). ICP was highest in the high TRAJ group (median 17.6 mm Hg), compared with 14.4 mmHg in the low and 15.9 mm Hg in middle TRAJ groups (p = 0.002). High TRAJ patients spent the longest time with ICP >25 mm Hg, median 23 h, compared with 2 and 6 h in the low and middle TRAJ groups (p = 0.006), and the longest time with ICP >30 mm Hg, median 5 h, compared with 0 and 1 h in the low and middle TRAJ groups, respectively (p = 0.013). High TRAJ group patients more commonly required tier 2 or 3 treatment to control ICP. The high TRAJ group had the longest duration when CPP was <50 mm Hg (p = 0.007), and PbtO2 was <10 mm Hg (p = 0.002). Logistical regression was used to study the relationship between temporal serum GFAP patterns and 6-month GOS-E. Here, the low and middle TRAJ groups were combined to form a low-risk group, and the high TRAJ group was designated the high-risk group. High TRAJ group patients had a greater chance of a poor 6-month GOS-E (p < 0.0001). When adjusting for baseline injury characteristics, GFAP TRAJ group membership remained associated with GOS-E (p = 0.003). When an intensive care unit (ICU) injury burden score, developed to quantify physiological derangements, was added to the model, GFAP TRAJ group membership remained associated with GOS-E (p = 0.014). Mediation analysis suggested that ICU burden scores were in the causal pathway between TRAJ group and 6-month mortality or GOS-E. Our results suggest that GFAP may be useful to monitor serially in moderate-severe TBI patients. Future studies in larger cohorts are needed to confirm these results.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Proteína Glial Fibrilar Ácida , Biomarcadores , Pressão Intracraniana/fisiologia
4.
J Neurotrauma ; 41(3-4): 369-392, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-37725589

RESUMO

Traumatic brain injury (TBI) can initiate progressive injury responses, which are linked to increased risk of neurodegenerative diseases known as "tauopathies." Increased post-TBI tau hyperphosphorylation has been reported in brain tissue and biofluids. Acute-to-chronic TBI total (T)-tau and phosphorylated (P)-tau temporal profiles in the cerebrospinal fluid (CSF) and serum and their relationship to global outcome is unknown. Our multi-site longitudinal study examines these concurrent profiles acutely (CSF and serum) and also characterizes the acute- to-chronic serum patterns. Serial serum and CSF samples from individuals with moderate-to-severe TBI were obtained from two cohorts (acute, subacute, and chronic samples from University of Pittsburgh [UPitt] [n = 286 unique subjects] and acute samples from Baylor College of Medicine [BCM] [n = 114 unique subjects]) and assayed for T-tau and P-tau using the Rolling Circle Amplification-Surround Optical Fiber ImmunoAssay platform. Biokinetic analyses described serum T-tau and P-tau temporal patterns. T-tau and P-tau levels are compared with those in healthy controls (n = 89 for both CSF and serum), and univariate/multivariable associations are made with global outcome, including the Disability Rating Scale (DRS) and the Glasgow Outcome Scale-Extended (GOS-E) scores at 3 and 6 months post-TBI (BCM cohort) and at 6 and 12 months post-TBI (UPitt cohort). For both the UPitt and BCM cohorts, temporal increases in median serum and CSF T-tau and P-tau levels occurred over the first 5 days post-injury, while the initial increases of P-tau:T-tau ratio plateaued by day 4 post-injury (UPitt: n = 99, BCM: n = 48). Biokinetic analyses with UPitt data showed novel findings that T-tau (n = 74) and P-tau (n = 87) reached delayed maximum levels at 4.5 and 5.1 days, while exhibiting long serum half-lives (152 and 123 days), respectively. The post-TBI rise in acute (days 2-6) serum P-tau (up to 276-fold) far outpaced that of T-tau (7.3-fold), leading to a P-tau:T-tau increase of up to 267-fold, suggesting a shift toward tau hyperphosphorylation. BCM analyses showed that days 0-6 mean CSF T-tau and P-tau levels and P-tau:T-tau ratios were associated with greater disability (DRS) (n = 48) and worse global outcome (GOS-E) (n = 48) 6 months post-injury. Days 0-6 mean serum T-tau, P-tau, and P-tau:T-tau ratio were not associated with outcome in either cohort (UPitt: n = 145 [DRS], n = 154 [GOS-E], BCM: n = 99 [DRS and GOS-E]). UPitt multivariate models showed that higher chronic (months 1-6) mean P-tau levels and P-tau:T-tau ratio, but not T-tau levels, are associated with greater disability (DRS: n = 119) and worse global outcomes (GOS-E: n = 117) 12 months post-injury. This work shows the potential importance of monitoring post-TBI T-tau and P-tau levels over time. This multi-site longitudinal study features concurrent acute TBI T-tau and P-tau profiles in CSF and serum, and also characterizes acute-to-chronic serum profiles. Longitudinal profiles, along with no temporal concordance between trajectory groups over time, imply a sustained post-TBI shift in tau phosphorylation dynamics that may favor tauopathy development chronically.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Biomarcadores , Escala de Resultado de Glasgow , Estudos Longitudinais
5.
J Clin Med ; 10(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34640381

RESUMO

Traumatic brain injury (TBI) induces immune dysfunction that can be captured clinically by an increase in the neutrophil-to-lymphocyte ratio (NLR). However, few studies have characterized the temporal dynamics of NLR post-TBI and its relationship with hospital-acquired infections (HAI), resource utilization, or outcome. We assessed NLR and HAI over the first 21 days post-injury in adults with moderate-to-severe TBI (n = 196) using group-based trajectory (TRAJ), changepoint, and mixed-effects multivariable regression analysis to characterize temporal dynamics. We identified two groups with unique NLR profiles: a high (n = 67) versus a low (n = 129) TRAJ group. High NLR TRAJ had higher rates (76.12% vs. 55.04%, p = 0.004) and earlier time to infection (p = 0.003). In changepoint-derived day 0-5 and 6-20 epochs, low lymphocyte TRAJ, early in recovery, resulted in more frequent HAIs (p = 0.042), subsequently increasing later NLR levels (p ≤ 0.0001). Both high NLR TRAJ and HAIs increased hospital length of stay (LOS) and days on ventilation (p ≤ 0.05 all), while only high NLR TRAJ significantly increased odds of unfavorable six-month outcome as measured by the Glasgow Outcome Scale (GOS) (p = 0.046) in multivariable regression. These findings provide insight into the temporal dynamics and interrelatedness of immune factors which collectively impact susceptibility to infection and greater hospital resource utilization, as well as influence recovery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...