Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Ecol Appl ; 32(1): e02468, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34614272

RESUMO

As both plant and animal species shift their ranges in response to a changing climate, maintaining connectivity between present habitat and suitable habitat in the future will become increasingly important to ensure lasting protection for biodiversity. Because the temporal period commensurate with planning for mid-century change is multi-generational for most species, connectivity designed to facilitate climate adaptation requires pathways with 'stepping-stones' between current and future habitat. These areas should have habitats suitable not only for dispersal, but for all aspects of species lifecycles. We integrated present-day land use, topographic diversity, and projections of shifting climate regimes into a single connectivity modeling approach to identify pathways for mid-century shifts in species ranges. Using Omniscape we identified climate linkages, or areas important for climate change-driven movement, as the areas with more current flow than would be expected in the absence of climate considerations. This approach identified connectivity potential between natural lands in the present climate and natural lands with future analogous climate following topo-climatically diverse routes. We then translated the model output into a strategic framework to improve interpretation and to facilitate a more direct connection with conservation action. Across modified landscapes, pathways important to climate-driven movement were highly coincident with the last remaining present-day linkages, reinforcing their importance. Across unfragmented lands, the presence of climate-adapted pathways helped inform the prioritization of conservation actions in areas where multiple connectivity options still exist. Many climate linkages follow major watercourses along elevational gradients, highlighting the importance of protecting or managing for these natural linear pathways that provide movement routes for climate adaptation. By integrating enduring landscape features with climate projections and present-day land uses, our approach reveals "no-regrets" pathways to plan for a connected landscape in an uncertain future.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Animais , Biodiversidade , Ecossistema , Plantas
2.
PLoS One ; 13(11): e0205156, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30427831

RESUMO

Riparian habitats have been frequently identified as priority areas for conservation under climate change because they span climatic gradients and have cool, moist microclimates relative to surrounding areas. They are therefore expected to act as dispersal corridors for climate-induced species range shifts and to provide microclimatic refugia from warming. Despite recognition of these values, rigorous methods to identify which riparian areas are most likely to facilitate range shifts and provide refugia are currently lacking. We completed a novel analysis across the Pacific Northwest, USA, that identifies potential riparian corridors featuring characteristics expected to enhance their ability to facilitate range shifts and provide refugia. These features include large temperature gradients, high canopy cover, large relative width, low exposure to solar radiation, and low levels of human modification. These variables were used to calculate a riparian climate-corridor index using a multi-scale approach that incorporates results ranging in scale from local watersheds to the entire Pacific Northwest. Resulting index values for potential riparian corridors in the Pacific Northwest were highest within mountainous areas and lowest within relatively flat, lowland regions. We also calculated index values within ecoregions, to better identify high-value riparian climate corridors within the relatively flat, degraded areas where they may most contribute to climate adaptation. We found that high-value riparian climate-corridors are least protected in flat, lowland areas, suggesting that such corridors should be high priorities for future conservation effort. Our analysis provides critical information on valuable riparian climate-corridors to guide climate adaptation efforts (and riparian management and restoration efforts) in the Pacific Northwest, while offering a novel approach that may be applied to similar efforts in other geographies.


Assuntos
Mudança Climática , Ecossistema , Rios , Adaptação Fisiológica , Conservação dos Recursos Naturais , Geografia , Humanos , Noroeste dos Estados Unidos , Refúgio de Vida Selvagem , Temperatura
3.
Glob Chang Biol ; 23(11): 4508-4520, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28267245

RESUMO

As most regions of the earth transition to altered climatic conditions, new methods are needed to identify refugia and other areas whose conservation would facilitate persistence of biodiversity under climate change. We compared several common approaches to conservation planning focused on climate resilience over a broad range of ecological settings across North America and evaluated how commonalities in the priority areas identified by different methods varied with regional context and spatial scale. Our results indicate that priority areas based on different environmental diversity metrics differed substantially from each other and from priorities based on spatiotemporal metrics such as climatic velocity. Refugia identified by diversity or velocity metrics were not strongly associated with the current protected area system, suggesting the need for additional conservation measures including protection of refugia. Despite the inherent uncertainties in predicting future climate, we found that variation among climatic velocities derived from different general circulation models and emissions pathways was less than the variation among the suite of environmental diversity metrics. To address uncertainty created by this variation, planners can combine priorities identified by alternative metrics at a single resolution and downweight areas of high variation between metrics. Alternately, coarse-resolution velocity metrics can be combined with fine-resolution diversity metrics in order to leverage the respective strengths of the two groups of metrics as tools for identification of potential macro- and microrefugia that in combination maximize both transient and long-term resilience to climate change. Planners should compare and integrate approaches that span a range of model complexity and spatial scale to match the range of ecological and physical processes influencing persistence of biodiversity and identify a conservation network resilient to threats operating at multiple scales.


Assuntos
Biodiversidade , Mudança Climática , Conservação dos Recursos Naturais , Refúgio de Vida Selvagem , Conservação dos Recursos Naturais/métodos , Ecologia , Previsões , América do Norte
4.
Conserv Biol ; 31(6): 1397-1408, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28339121

RESUMO

Increasing connectivity is an important strategy for facilitating species range shifts and maintaining biodiversity in the face of climate change. To date, however, few researchers have included future climate projections in efforts to prioritize areas for increasing connectivity. We identified key areas likely to facilitate climate-induced species' movement across western North America. Using historical climate data sets and future climate projections, we mapped potential species' movement routes that link current climate conditions to analogous climate conditions in the future (i.e., future climate analogs) with a novel moving-window analysis based on electrical circuit theory. In addition to tracing shifting climates, the approach accounted for landscape permeability and empirically derived species' dispersal capabilities. We compared connectivity maps generated with our climate-change-informed approach with maps of connectivity based solely on the degree of human modification of the landscape. Including future climate projections in connectivity models substantially shifted and constrained priority areas for movement to a smaller proportion of the landscape than when climate projections were not considered. Potential movement, measured as current flow, decreased in all ecoregions when climate projections were included, particularly when dispersal was limited, which made climate analogs inaccessible. Many areas emerged as important for connectivity only when climate change was modeled in 2 time steps rather than in a single time step. Our results illustrate that movement routes needed to track changing climatic conditions may differ from those that connect present-day landscapes. Incorporating future climate projections into connectivity modeling is an important step toward facilitating successful species movement and population persistence in a changing climate.


Assuntos
Distribuição Animal , Mudança Climática , Conservação dos Recursos Naturais/métodos , Dispersão Vegetal , Animais , Canadá , Clima , Mapeamento Geográfico , Modelos Biológicos , Estados Unidos
5.
Proc Natl Acad Sci U S A ; 113(26): 7195-200, 2016 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-27298349

RESUMO

The contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements. Here, we quantify climate connectivity, the capacity of landscape configuration to allow species movement in the face of dynamically shifting climate. Using this metric, we assess to what extent habitat fragmentation will limit species movements in response to climate change. We then evaluate how creating corridors to promote climate connectivity could potentially mitigate these restrictions, and we assess where strategies to increase connectivity will be most beneficial. By analyzing fragmentation patterns across the contiguous United States, we demonstrate that only 41% of natural land area retains enough connectivity to allow plants and animals to maintain climatic parity as the climate warms. In the eastern United States, less than 2% of natural area is sufficiently connected. Introducing corridors to facilitate movement through human-dominated regions increases the percentage of climatically connected natural area to 65%, with the most impactful gains in low-elevation regions, particularly in the southeastern United States. These climate connectivity analyses allow ecologists and conservation practitioners to determine the most effective regions for increasing connectivity. More importantly, our findings demonstrate that increasing climate connectivity is critical for allowing species to track rapidly changing climates, reconfiguring habitats to promote access to suitable climates.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Migração Animal , Animais , Clima , Geografia , Estados Unidos
6.
PLoS One ; 11(4): e0154223, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27104683

RESUMO

Conservation scientists emphasize the importance of maintaining a connected network of protected areas to prevent ecosystems and populations from becoming isolated, reduce the risk of extinction, and ultimately sustain biodiversity. Keeping protected areas connected in a network is increasingly recognized as a conservation priority in the current era of rapid climate change. Models that identify suitable linkages between core areas have been used to prioritize potentially important corridors for maintaining functional connectivity. Here, we identify the most "natural" (i.e., least human-modified) corridors between large protected areas in the contiguous Unites States. We aggregated results from multiple connectivity models to develop a composite map of corridors reflecting agreement of models run under different assumptions about how human modification of land may influence connectivity. To identify which land units are most important for sustaining structural connectivity, we used the composite map of corridors to evaluate connectivity priorities in two ways: (1) among land units outside of our pool of large core protected areas and (2) among units administratively protected as Inventoried Roadless (IRAs) or Wilderness Study Areas (WSAs). Corridor values varied substantially among classes of "unprotected" non-core land units, and land units of high connectivity value and priority represent diverse ownerships and existing levels of protections. We provide a ranking of IRAs and WSAs that should be prioritized for additional protection to maintain minimal human modification. Our results provide a coarse-scale assessment of connectivity priorities for maintaining a connected network of protected areas.


Assuntos
Distribuição Animal , Conservação dos Recursos Naturais/métodos , Ecossistema , Dispersão Vegetal , Animais , Biodiversidade , Clima , Mudança Climática , Geografia , Humanos , Modelos Teóricos , Estados Unidos
7.
PLoS One ; 8(12): e81898, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24367495

RESUMO

The impact of landscape changes on the quality and connectivity of habitats for multiple wildlife species is of global conservation concern. In the southwestern United States, pumas (Puma concolor) are a well distributed and wide-ranging large carnivore that are sensitive to loss of habitat and to the disruption of pathways that connect their populations. We used an expert-based approach to define and derive variables hypothesized to influence the quality, location, and permeability of habitat for pumas within an area encompassing the entire states of Arizona and New Mexico. Survey results indicated that the presence of woodland and forest cover types, rugged terrain, and canyon bottom and ridgeline topography were expected to be important predictors of both high quality habitat and heightened permeability. As road density, distance to water, or human population density increased, the quality and permeability of habitats were predicted to decline. Using these results, we identified 67 high quality patches across the study area, and applied concepts from electronic circuit theory to estimate regional patterns of connectivity among these patches. Maps of current flow among individual pairs of patches highlighted possible pinch points along two major interstate highways. Current flow summed across all pairs of patches highlighted areas important for keeping the entire network connected, regardless of patch size. Cumulative current flow was highest in Arizona north of the Colorado River and around Grand Canyon National Park, and in the Sky Islands region owing to the many small habitat patches present. Our outputs present a first approximation of habitat quality and connectivity for dispersing pumas in the southwestern United States. Map results can be used to help target finer-scaled analyses in support of planning efforts concerned with the maintenance of puma metapopulation structure, as well as the protection of landscape features that facilitate the dispersal process.


Assuntos
Ecossistema , Modelos Teóricos , Puma , Animais , Conservação dos Recursos Naturais , Sudoeste dos Estados Unidos
8.
Conserv Biol ; 27(2): 407-16, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23410037

RESUMO

As the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature. We modified a cost-distance algorithm to model these corridors and tested the model with data on current land-use and climate patterns in the Pacific Northwest of the United States. The resulting maps identified a network of patches and corridors across which species may move as climates change. The corridors are likely to be robust to uncertainty in the magnitude and direction of future climate change because they are derived from gradients and land-use patterns. The assumptions we applied in our model simplified the stability of temperature gradients and species responses to climate change and land use, but the model is flexible enough to be tailored to specific regions by incorporating other climate variables or movement costs. When used at appropriate resolutions, our approach may be of value to local, regional, and continental conservation initiatives seeking to promote species movements in a changing climate. Planificación de Conectividad para Atender el Cambio Climático.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais/métodos , Ecossistema , Distribuição Animal , Animais , Colúmbia Britânica , Modelos Biológicos , Noroeste dos Estados Unidos , Dispersão Vegetal
9.
PLoS One ; 7(12): e52604, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23300719

RESUMO

Landscape connectivity is crucial for many ecological processes, including dispersal, gene flow, demographic rescue, and movement in response to climate change. As a result, governmental and non-governmental organizations are focusing efforts to map and conserve areas that facilitate movement to maintain population connectivity and promote climate adaptation. In contrast, little focus has been placed on identifying barriers-landscape features which impede movement between ecologically important areas-where restoration could most improve connectivity. Yet knowing where barriers most strongly reduce connectivity can complement traditional analyses aimed at mapping best movement routes. We introduce a novel method to detect important barriers and provide example applications. Our method uses GIS neighborhood analyses in conjunction with effective distance analyses to detect barriers that, if removed, would significantly improve connectivity. Applicable in least-cost, circuit-theoretic, and simulation modeling frameworks, the method detects both complete (impermeable) barriers and those that impede but do not completely block movement. Barrier mapping complements corridor mapping by broadening the range of connectivity conservation alternatives available to practitioners. The method can help practitioners move beyond maintaining currently important areas to restoring and enhancing connectivity through active barrier removal. It can inform decisions on trade-offs between restoration and protection; for example, purchasing an intact corridor may be substantially more costly than restoring a barrier that blocks an alternative corridor. And it extends the concept of centrality to barriers, highlighting areas that most diminish connectivity across broad networks. Identifying which modeled barriers have the greatest impact can also help prioritize error checking of land cover data and collection of field data to improve connectivity maps. Barrier detection provides a different way to view the landscape, broadening thinking about connectivity and fragmentation while increasing conservation options.


Assuntos
Conservação dos Recursos Naturais/métodos , Distribuição Animal , Animais , Mudança Climática , Ecossistema , Fluxo Gênico , Genética Populacional , Sistemas de Informação Geográfica , Mapeamento Geográfico , Humanos , Modelos Teóricos , Washington
10.
Conserv Biol ; 26(1): 78-87, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22010832

RESUMO

Centrality metrics evaluate paths between all possible pairwise combinations of sites on a landscape to rank the contribution of each site to facilitating ecological flows across the network of sites. Computational advances now allow application of centrality metrics to landscapes represented as continuous gradients of habitat quality. This avoids the binary classification of landscapes into patch and matrix required by patch-based graph analyses of connectivity. It also avoids the focus on delineating paths between individual pairs of core areas characteristic of most corridor- or linkage-mapping methods of connectivity analysis. Conservation of regional habitat connectivity has the potential to facilitate recovery of the gray wolf (Canis lupus), a species currently recolonizing portions of its historic range in the western United States. We applied 3 contrasting linkage-mapping methods (shortest path, current flow, and minimum-cost-maximum-flow) to spatial data representing wolf habitat to analyze connectivity between wolf populations in central Idaho and Yellowstone National Park (Wyoming). We then applied 3 analogous betweenness centrality metrics to analyze connectivity of wolf habitat throughout the northwestern United States and southwestern Canada to determine where it might be possible to facilitate range expansion and interpopulation dispersal. We developed software to facilitate application of centrality metrics. Shortest-path betweenness centrality identified a minimal network of linkages analogous to those identified by least-cost-path corridor mapping. Current flow and minimum-cost-maximum-flow betweenness centrality identified diffuse networks that included alternative linkages, which will allow greater flexibility in planning. Minimum-cost-maximum-flow betweenness centrality, by integrating both land cost and habitat capacity, allows connectivity to be considered within planning processes that seek to maximize species protection at minimum cost. Centrality analysis is relevant to conservation and landscape genetics at a range of spatial extents, but it may be most broadly applicable within single- and multispecies planning efforts to conserve regional habitat connectivity.


Assuntos
Conservação dos Recursos Naturais/métodos , Lobos/fisiologia , Animais , Canadá , Ecossistema , Sistemas de Informação Geográfica , Idaho , Densidade Demográfica , Dinâmica Populacional , Wyoming
11.
PLoS One ; 6(12): e28788, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22174897

RESUMO

Systematic conservation planning efforts typically focus on protecting current patterns of biodiversity. Climate change is poised to shift species distributions, reshuffle communities, and alter ecosystem functioning. In such a dynamic environment, lands selected to protect today's biodiversity may fail to do so in the future. One proposed approach to designing reserve networks that are robust to climate change involves protecting the diversity of abiotic conditions that in part determine species distributions and ecological processes. A set of abiotically diverse areas will likely support a diversity of ecological systems both today and into the future, although those two sets of systems might be dramatically different. Here, we demonstrate a conservation planning approach based on representing unique combinations of abiotic factors. We prioritize sites that represent the diversity of soils, topographies, and current climates of the Columbia Plateau. We then compare these sites to sites prioritized to protect current biodiversity. This comparison highlights places that are important for protecting both today's biodiversity and the diversity of abiotic factors that will likely determine biodiversity patterns in the future. It also highlights places where a reserve network designed solely to protect today's biodiversity would fail to capture the diversity of abiotic conditions and where such a network could be augmented to be more robust to climate-change impacts.


Assuntos
Mudança Climática , Conservação dos Recursos Naturais , Ecossistema , Mudança Climática/economia , Conservação dos Recursos Naturais/economia , Geografia , Noroeste dos Estados Unidos
12.
Conserv Biol ; 25(5): 879-92, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21797924

RESUMO

To conserve ecological connectivity (the ability to support animal movement, gene flow, range shifts, and other ecological and evolutionary processes that require large areas), conservation professionals need coarse-grained maps to serve as decision-support tools or vision statements and fine-grained maps to prescribe site-specific interventions. To date, research has focused primarily on fine-grained maps (linkage designs) covering small areas. In contrast, we devised 7 steps to coarsely map dozens to hundreds of linkages over a large area, such as a nation, province, or ecoregion. We provide recommendations on how to perform each step on the basis of our experiences with 6 projects: California Missing Linkages (2001), Arizona Wildlife Linkage Assessment (2006), California Essential Habitat Connectivity (2010), Two Countries, One Forest (northeastern United States and southeastern Canada) (2010), Washington State Connected Landscapes (2010), and the Bhutan Biological Corridor Complex (2010). The 2 most difficult steps are mapping natural landscape blocks (areas whose conservation value derives from the species and ecological processes within them) and determining which pairs of blocks can feasibly be connected in a way that promotes conservation. Decision rules for mapping natural landscape blocks and determining which pairs of blocks to connect must reflect not only technical criteria, but also the values and priorities of stakeholders. We recommend blocks be mapped on the basis of a combination of naturalness, protection status, linear barriers, and habitat quality for selected species. We describe manual and automated procedures to identify currently functioning or restorable linkages. Once pairs of blocks have been identified, linkage polygons can be mapped by least-cost modeling, other approaches from graph theory, or individual-based movement models. The approaches we outline make assumptions explicit, have outputs that can be improved as underlying data are improved, and help implementers focus strictly on ecological connectivity.


Assuntos
Conservação dos Recursos Naturais/métodos , Ecossistema , Mapas como Assunto , Modelos Teóricos , Mudança Climática
13.
Int J Mol Sci ; 12(2): 865-89, 2011 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-21541031

RESUMO

Recently, techniques available for identifying clusters of individuals or boundaries between clusters using genetic data from natural populations have expanded rapidly. Consequently, there is a need to evaluate these different techniques. We used spatially-explicit simulation models to compare three spatial Bayesian clustering programs and two edge detection methods. Spatially-structured populations were simulated where a continuous population was subdivided by barriers. We evaluated the ability of each method to correctly identify boundary locations while varying: (i) time after divergence, (ii) strength of isolation by distance, (iii) level of genetic diversity, and (iv) amount of gene flow across barriers. To further evaluate the methods' effectiveness to detect genetic clusters in natural populations, we used previously published data on North American pumas and a European shrub. Our results show that with simulated and empirical data, the Bayesian spatial clustering algorithms outperformed direct edge detection methods. All methods incorrectly detected boundaries in the presence of strong patterns of isolation by distance. Based on this finding, we support the application of Bayesian spatial clustering algorithms for boundary detection in empirical datasets, with necessary tests for the influence of isolation by distance.


Assuntos
Evolução Molecular , Genética Populacional/métodos , Modelos Genéticos , Puma/genética , Rhododendron/genética , Animais , Teorema de Bayes , Ecossistema , Variação Genética , Repetições de Microssatélites , População/genética
14.
Mol Ecol ; 19(17): 3576-91, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20723064

RESUMO

Measures of genetic structure among individuals or populations collected at different spatial locations across a landscape are commonly used as surrogate measures of functional (i.e. demographic or genetic) connectivity. In order to understand how landscape characteristics influence functional connectivity, resistance surfaces are typically created in a raster GIS environment. These resistance surfaces represent hypothesized relationships between landscape features and gene flow, and are based on underlying biological functions such as relative abundance or movement probabilities in different land cover types. The biggest challenge for calculating resistance surfaces is assignment of resistance values to different landscape features. Here, we first identify study objectives that are consistent with the use of resistance surfaces and critically review the various approaches that have been used to parameterize resistance surfaces and select optimal models in landscape genetics. We then discuss the biological assumptions and considerations that influence analyses using resistance surfaces, such as the relationship between gene flow and dispersal, how habitat suitability may influence animal movement, and how resistance surfaces can be translated into estimates of functional landscape connectivity. Finally, we outline novel approaches for creating optimal resistance surfaces using either simulation or computational methods, as well as alternatives to resistance surfaces (e.g. network and buffered paths). These approaches have the potential to improve landscape genetic analyses, but they also create new challenges. We conclude that no single way of using resistance surfaces is appropriate for every situation. We suggest that researchers carefully consider objectives, important biological assumptions and available parameterization and validation techniques when planning landscape genetic studies.


Assuntos
Ecologia/métodos , Meio Ambiente , Fluxo Gênico , Genética Populacional , Algoritmos , Inteligência Artificial , Simulação por Computador , Geografia , Modelos Genéticos
15.
Mol Ecol ; 19(17): 3549-64, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20618894

RESUMO

Population genetics theory is primarily based on mathematical models in which spatial complexity and temporal variability are largely ignored. In contrast, the field of landscape genetics expressly focuses on how population genetic processes are affected by complex spatial and temporal environmental heterogeneity. It is spatially explicit and relates patterns to processes by combining complex and realistic life histories, behaviours, landscape features and genetic data. Central to landscape genetics is the connection of spatial patterns of genetic variation to the usually highly stochastic space-time processes that create them over both historical and contemporary time periods. The field should benefit from a shift to computer simulation approaches, which enable incorporation of demographic and environmental stochasticity. A key role of simulations is to show how demographic processes such as dispersal or reproduction interact with landscape features to affect probability of site occupancy, population size, and gene flow, which in turn determine spatial genetic structure. Simulations could also be used to compare various statistical methods and determine which have correct type I error or the highest statistical power to correctly identify spatio-temporal and environmental effects. Simulations may also help in evaluating how specific spatial metrics may be used to project future genetic trends. This article summarizes some of the fundamental aspects of spatial-temporal population genetic processes. It discusses the potential use of simulations to determine how various spatial metrics can be rigorously employed to identify features of interest, including contrasting locus-specific spatial patterns due to micro-scale environmental selection.


Assuntos
Simulação por Computador , Meio Ambiente , Genética Populacional , Modelos Genéticos , Demografia , Ecologia/métodos , Fluxo Gênico , Geografia , Modelos Estatísticos , Seleção Genética , Processos Estocásticos , Incerteza
16.
Mol Ecol ; 18(9): 1863-74, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19302465

RESUMO

Understanding factors that influence population connectivity and the spatial distribution of genetic variation is a major goal in molecular ecology. Improvements in the availability of high-resolution geographic data have made it increasingly possible to quantify the effects of landscape features on dispersal and genetic structure. However, most studies examining such landscape effects have been conducted at very fine (e.g. landscape genetics) or broad (e.g. phylogeography) spatial scales. Thus, the extent to which processes operating at fine spatial scales are linked to patterns at larger scales remains unclear. Here, we test whether factors impacting wood frog dispersal at fine spatial scales are correlated with genetic structure at regional scales. Using recently developed methods borrowed from electrical circuit theory, we generated landscape resistance matrices among wood frog populations in eastern North America based on slope, a wetness index, land cover and absolute barriers to wood frog dispersal. We then determined whether these matrices are correlated with genetic structure based on six microsatellite markers and whether such correlations outperform a landscape-free model of isolation by resistance. We observed significant genetic structure at regional spatial scales. However, topography and landscape variables associated with the intervening habitat between sites provide little explanation for patterns of genetic structure. Instead, absolute dispersal barriers appear to be the best predictor of regional genetic structure in this species. Our results suggest that landscape variables that influence dispersal, microhabitat selection and population structure at fine spatial scales do not necessarily explain patterns of genetic structure at broader scales.


Assuntos
Ecossistema , Genética Populacional , Modelos Genéticos , Filogenia , Ranidae/genética , Animais , Fluxo Gênico , Variação Genética , Geografia , Repetições de Microssatélites , América do Norte , Dinâmica Populacional , Análise de Sequência de DNA
17.
Ecology ; 89(10): 2712-24, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18959309

RESUMO

Connectivity among populations and habitats is important for a wide range of ecological processes. Understanding, preserving, and restoring connectivity in complex landscapes requires connectivity models and metrics that are reliable, efficient, and process based. We introduce a new class of ecological connectivity models based in electrical circuit theory. Although they have been applied in other disciplines, circuit-theoretic connectivity models are new to ecology. They offer distinct advantages over common analytic connectivity models, including a theoretical basis in random walk theory and an ability to evaluate contributions of multiple dispersal pathways. Resistance, current, and voltage calculated across graphs or raster grids can be related to ecological processes (such as individual movement and gene flow) that occur across large population networks or landscapes. Efficient algorithms can quickly solve networks with millions of nodes, or landscapes with millions of raster cells. Here we review basic circuit theory, discuss relationships between circuit and random walk theories, and describe applications in ecology, evolution, and conservation. We provide examples of how circuit models can be used to predict movement patterns and fates of random walkers in complex landscapes and to identify important habitat patches and movement corridors for conservation planning.


Assuntos
Evolução Biológica , Conservação dos Recursos Naturais , Ecologia/métodos , Ecossistema , Modelos Biológicos , Algoritmos , Animais , Modelos Teóricos , Densidade Demográfica , Dinâmica Populacional
18.
Proc Natl Acad Sci U S A ; 104(50): 19885-90, 2007 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-18056641

RESUMO

Maintaining connectivity for broad-scale ecological processes like dispersal and gene flow is essential for conserving endangered species in fragmented landscapes. However, determining which habitats should be set aside to promote connectivity has been difficult because existing models cannot incorporate effects of multiple pathways linking populations. Here, we test an ecological connectivity model that overcomes this obstacle by borrowing from electrical circuit theory. The model vastly improves gene flow predictions because it simultaneously integrates all possible pathways connecting populations. When applied to data from threatened mammal and tree species, the model consistently outperformed conventional gene flow models, revealing that barriers were less important in structuring populations than previously thought. Circuit theory now provides the best-justified method to bridge landscape and genetic data, and holds much promise in ecology, evolution, and conservation planning.


Assuntos
Desenvolvimento Vegetal , Plantas/genética , Animais , Canadá , América Central , Fluxo Gênico , Modelos Biológicos , Dinâmica Populacional , Estados Unidos
19.
Evolution ; 60(8): 1551-61, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17017056

RESUMO

Despite growing interest in the effects of landscape heterogeneity on genetic structuring, few tools are available to incorporate data on landscape composition into population genetic studies. Analyses of isolation by distance have typically either assumed spatial homogeneity for convenience or applied theoretically unjustified distance metrics to compensate for heterogeneity. Here I propose the isolation-by-resistance (IBR) model as an alternative for predicting equilibrium genetic structuring in complex landscapes. The model predicts a positive relationship between genetic differentiation and the resistance distance, a distance metric that exploits precise relationships between random walk times and effective resistances in electronic networks. As a predictor of genetic differentiation, the resistance distance is both more theoretically justified and more robust to spatial heterogeneity than Euclidean or least cost path-based distance measures. Moreover, the metric can be applied with a wide range of data inputs, including coarse-scale range maps, simple maps of habitat and nonhabitat within a species' range, or complex spatial datasets with habitats and barriers of differing qualities. The IBR model thus provides a flexible and efficient tool to account for habitat heterogeneity in studies of isolation by distance, improve understanding of how landscape characteristics affect genetic structuring, and predict genetic and evolutionary consequences of landscape change.


Assuntos
Evolução Biológica , Ecossistema , Modelos Genéticos , Demografia , Cadeias de Markov , Software
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...