Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 46(21): 11575-11591, 2018 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-30247708

RESUMO

BC200 is a long non-coding RNA primarily expressed in brain but aberrantly expressed in various cancers. To gain a further understanding of the function of BC200, we performed proteomic analyses of the BC200 ribonucleoprotein (RNP) by transfection of 3' DIG-labelled BC200. Protein binding partners of the functionally related murine RNA BC1 as well as a scrambled BC200 RNA were also assessed in both human and mouse cell lines. Stringent validation of proteins identified by mass spectrometry confirmed 14 of 84 protein binding partners and excluded eight proteins that did not appreciably bind BC200 in reverse experiments. Gene ontology analyses revealed general roles in RNA metabolic processes, RNA processing and splicing. Protein/RNA interaction sites were mapped with a series of RNA truncations revealing three distinct modes of interaction involving either the 5' Alu-domain, 3' A-rich or 3' C-rich regions. Due to their high enrichment values in reverse experiments, CSDE1 and STRAP were further analyzed demonstrating a direct interaction between CSDE1 and BC200 and indirect binding of STRAP to BC200 via heterodimerization with CSDE1. Knock-down studies identified a reciprocal regulatory relationship between CSDE1 and BC200 and immunofluorescence analysis of BC200 knock-down cells demonstrated a dramatic reorganization of CSDE1 into distinct nuclear foci.


Assuntos
Proteínas de Ligação a DNA/metabolismo , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo , Animais , Citoplasma/genética , Citoplasma/metabolismo , Proteínas de Ligação a DNA/genética , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Meia-Vida , Humanos , Células MCF-7 , Espectrometria de Massas , Camundongos , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Longo não Codificante/genética , Proteínas de Ligação a RNA/genética , Reprodutibilidade dos Testes
2.
Mol Cancer ; 16(1): 109, 2017 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-28651607

RESUMO

BACKGROUND: BC200 is a long non-coding RNA expressed at high levels in the brain and elevated in a variety of tumour types. BC200 has a hypothesized role in translational regulation; however, to date the functional role of BC200 in both normal and diseased states remains poorly characterized. METHODS: Detailed BC200 expression analyses were performed in tumor cell lines, primary and non-tumorigenic cultured breast and lung cells, and a panel of normal human tissues by quantitative real-time PCR and confirmed by northern blot. Subcellular fractionation was performed to assess BC200 distribution and efficient knock-down of BC200 was established using both locked nucleic acid (LNA) GapmeRs and conventional siRNAs. Cell viability following BC200 knockdown and overexpression was assessed by MTT assay and induction of apoptosis was monitored by Annexin V/PI staining and flow cytometry. Cell cycle arrest and synchronization were performed using serum withdrawal as well as the specific inhibitors Lovastatin, Thymidine, RO3306 and Nocodazole. Synchronization was monitored by fluorescent analysis of cellular DNA content by flow cytometry RESULTS: BC200 expression was substantially upregulated in brain and elevated expression was also observed in testes, small intestine and ovary. Expression in cultured tumour cells was dramatically higher than corresponding normal tissue; however, expression in cultured primary cells was similar to that in immortalized and cancer cell lines. BC200 knockdown resulted in a dramatic loss of viability through growth arrest and induction of apoptosis that could be partially rescued by overexpression of wild-type BC200 but not an siRNA-resistant sequence mutant. A substantial decrease in BC200 expression was observed upon cell confluence or serum deprivation, as well as drug induced cell cycle arrest in G1 or G2 but not S- or M-phases. Upon release from cell cycle arrest, BC200 expression was recovered as cells entered S-phase, but did not follow a periodic expression pattern during synchronized progression through the cell cycle. This elevated expression was critical for the survival of proliferating cancerous and non-cancerous cells, but is dispensable upon senescence or cell cycle arrest. CONCLUSIONS: BC200 expression is elevated in proliferating cultured cells regardless of origin. In primary cells, expression is dramatically reduced upon cell cycle arrest by confluence, serum deprivation or chemical inhibition. The lethality of BC200 knockdown is restricted to actively proliferating cells, making it a promising therapeutic target for a broad spectrum of cancers.


Assuntos
Regulação da Expressão Gênica , Neoplasias/genética , Neoplasias/patologia , RNA Longo não Codificante/genética , Apoptose/genética , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/genética , Sobrevivência Celular/genética , Células Cultivadas , Citoplasma/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Células MCF-7 , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...