Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
NPJ Biofilms Microbiomes ; 9(1): 11, 2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-36959210

RESUMO

Human microbiome composition is closely tied to health, but how the host manages its microbial inhabitants remains unclear. One important, but understudied, factor is the natural host environment: mucus, which contains gel-forming glycoproteins (mucins) that display hundreds of glycan structures with potential regulatory function. Leveraging a tractable culture-based system to study how mucins influence oral microbial communities, we found that mucin glycans enable the coexistence of diverse microbes, while resisting disease-associated compositional shifts. Mucins from tissues with unique glycosylation differentially tuned microbial composition, as did isolated mucin glycan libraries, uncovering the importance of specific glycan patterns in microbiome modulation. We found that mucins shape microbial communities in several ways: serving as nutrients to support metabolic diversity, organizing spatial structure through reduced aggregation, and possibly limiting antagonism between competing taxa. Overall, this work identifies mucin glycans as a natural host mechanism and potential therapeutic intervention to maintain healthy microbial communities.


Assuntos
Microbiota , Mucinas , Humanos , Mucinas/química , Mucinas/metabolismo , Glicosilação , Muco/metabolismo , Polissacarídeos/metabolismo
2.
EMBO J ; 42(3): e111562, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36504455

RESUMO

Pandemic and endemic strains of Vibrio cholerae arise from toxigenic conversion by the CTXφ bacteriophage, a process by which CTXφ infects nontoxigenic strains of V. cholerae. CTXφ encodes the cholera toxin, an enterotoxin responsible for the watery diarrhea associated with cholera infections. Despite the critical role of CTXφ during infections, signals that affect CTXφ-driven toxigenic conversion or expression of the CTXφ-encoded cholera toxin remain poorly characterized, particularly in the context of the gut mucosa. Here, we identify mucin polymers as potent regulators of CTXφ-driven pathogenicity in V. cholerae. Our results indicate that mucin-associated O-glycans block toxigenic conversion by CTXφ and suppress the expression of CTXφ-related virulence factors, including the toxin co-regulated pilus and cholera toxin, by interfering with the TcpP/ToxR/ToxT virulence pathway. By synthesizing individual mucin glycan structures de novo, we identify the Core 2 motif as the critical structure governing this virulence attenuation. Overall, our results highlight a novel mechanism by which mucins and their associated O-glycan structures affect CTXφ-mediated evolution and pathogenicity of V. cholerae, underscoring the potential regulatory power housed within mucus.


Assuntos
Bacteriófagos , Toxina da Cólera , Mucinas , Vibrio cholerae , Virulência , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Toxina da Cólera/genética , Toxina da Cólera/metabolismo , Mucinas/genética , Mucinas/metabolismo , Vibrio cholerae/genética , Vibrio cholerae/metabolismo , Virulência/genética , Virulência/fisiologia , Polissacarídeos/genética , Polissacarídeos/metabolismo
3.
Curr Biol ; 31(15): R938-R945, 2021 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-34375594

RESUMO

Mucus is a slimy hydrogel that lines the mucosal surfaces in our body, including the intestines, stomach, eyes, lungs and urogenital tract. This glycoprotein-rich network is truly the jack of all trades. As a barrier, it lubricates surfaces, protects our cells from physical stress, and selectively allows the passage of nutrients while clearing out pathogens and debris. As a home to our microbiota, it supports a level of microbial diversity that is unattainable with most culture methods. As a reservoir of complex carbohydrate structures called glycans, it plays critical roles in controlling cell adhesion and signaling, and it alters the behavior and spatial distribution of microbes. On top of all this, mucus regulates the passage of sperm during fertilization, heals wounds, helps us smell, and prevents the stomach from digesting itself, to name just a few of its functions. Given these impressive features, it is no wonder that mucus crosses boundaries of species and kingdoms - mucus gels are made by organisms ranging from the simplest metazoans to corals, snails, fish, and frogs. It is also no surprise that mucus is exploited in everyday applications, including foods, cosmetics, and other products relevant to medicine and industry.


Assuntos
Microbiota , Muco , Animais , Intestinos , Mucosa , Muco/metabolismo , Nutrientes
4.
J Am Chem Soc ; 142(13): 5952-5957, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32182063

RESUMO

Several Nocardia strains associated with nocardiosis, a potentially life-threatening disease, house a nonamodular assembly line polyketide synthase (PKS) that presumably synthesizes an unknown polyketide. Here, we report the discovery and structure elucidation of the NOCAP (nocardiosis-associated polyketide) aglycone by first fully reconstituting the NOCAP synthase in vitro from purified protein components followed by heterologous expression in E. coli and spectroscopic analysis of the purified products. The NOCAP aglycone has an unprecedented structure comprised of a substituted resorcylaldehyde headgroup linked to a 15-carbon tail that harbors two conjugated all-trans trienes separated by a stereogenic hydroxyl group. This report is the first example of reconstituting a trans-acyltransferase assembly line PKS in vitro and of using these approaches to "deorphanize" a complete assembly line PKS identified via genomic sequencing. With the NOCAP aglycone in hand, the stage is set for understanding how this PKS and associated tailoring enzymes confer an advantage to their native hosts during human Nocardia infections.


Assuntos
Proteínas de Bactérias/metabolismo , Nocardiose/microbiologia , Nocardia/metabolismo , Policetídeo Sintases/metabolismo , Policetídeos/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Humanos , Família Multigênica , Nocardia/química , Nocardia/genética , Policetídeo Sintases/química , Policetídeo Sintases/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...