Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; : e202406761, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990707

RESUMO

Multicomponent catalysts can be designed to synergistically combine reaction intermediates at interfacial active sites, but restructuring makes systematic control and understanding of such dynamics challenging. We here unveil how reducibility and mobility of indium oxide species in Ru-based catalysts crucially control the direct, selective conversion of CO2 to ethanol. When uncontrolled, reduced indium oxide species occupy the Ru surface, leading to deactivation. With the addition of steam as a mild oxidant and using porous polymer layers to control In mobility, Ru-In2O3 interface sites are stabilized, and ethanol can be produced with superior overall selectivity (70%, rest CO). Our work highlights how engineering of bifunctional active ensembles enables cooperativity and synergy at tailored interfaces, which unlocks unprecedented performance in heterogeneous catalysts.

2.
J Synchrotron Radiat ; 30(Pt 5): 917-922, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37594864

RESUMO

In situ techniques are essential to understanding the behavior of electrocatalysts under operating conditions. When employed, in situ synchrotron grazing-incidence X-ray diffraction (GI-XRD) can provide time-resolved structural information of materials formed at the electrode surface. In situ cells, however, often require epoxy resins to secure electrodes, do not enable electrolyte flow, or exhibit limited chemical compatibility, hindering the study of non-aqueous electrochemical systems. Here, a versatile electrochemical cell for air-free in situ synchrotron GI-XRD during non-aqueous Li-mediated electrochemical N2 reduction (Li-N2R) has been designed. This cell not only fulfills the stringent material requirements necessary to study this system but is also readily extendable to other electrochemical systems. Under conditions relevant to non-aqueous Li-N2R, the formation of Li metal, LiOH and Li2O as well as a peak consistent with the α-phase of Li3N was observed, thus demonstrating the functionality of this cell toward developing a mechanistic understanding of complicated electrochemical systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...