Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Pharmacol ; 87(3): 435-44, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24316433

RESUMO

The limitations of the ganciclovir (GCV)/herpes simplex virus thymidine kinase (HSV1 TK: EC 2.7.1.21) system as a suicide gene therapy approach have been extensively studied over the years. In our study, we focused on improving the cytotoxic profile of the GCV/equine herpes virus-4 thymidine kinase (EHV4 TK: EC 2.7.1.21) system. Our approach involved the structure-guided mutagenesis of EHV4 TK in order to switch its ability to preferentially phosphorylate the natural substrate deoxythymidine (dT) to that of GCV. We performed steady-state kinetic analysis, genetic complementation in a thymidine kinase-deficient Escherichia coli strain, isothermal titration calorimetry, and analysis of GCV-induced cell killing through generation of HEK 293 stable cell-lines expressing EHV4 TK mutants and wild-type EHV4 TK. We found that the EHV4 TK S144H-GFP mutant preferentially phosphorylates GCV and confers increased GCV-induced cytotoxicity compared to wild-type EHV4 TK.


Assuntos
Ganciclovir/farmacologia , Regulação Viral da Expressão Gênica/fisiologia , Herpesvirus Equídeo 4/enzimologia , Timidina Quinase/metabolismo , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Proliferação de Células , Desenho de Fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Herpesvirus Equídeo 4/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Conformação Proteica , Timidina Quinase/genética , Proteínas Virais/genética
2.
Chem Biol ; 20(4): 533-40, 2013 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-23601642

RESUMO

Human asparaginase 3 (hASNase3), which belongs to the N-terminal nucleophile hydrolase superfamily, is synthesized as a single polypeptide that is devoid of asparaginase activity. Intramolecular autoproteolytic processing releases the amino group of Thr168, a moiety required for catalyzing asparagine hydrolysis. Recombinant hASNase3 purifies as the uncleaved, asparaginase-inactive form and undergoes self-cleavage to the active form at a very slow rate. Here, we show that the free amino acid glycine selectively acts to accelerate hASNase3 cleavage both in vitro and in human cells. Other small amino acids such as alanine, serine, or the substrate asparagine are not capable of promoting autoproteolysis. Crystal structures of hASNase3 in complex with glycine in the uncleaved and cleaved enzyme states reveal the mechanism of glycine-accelerated posttranslational processing and explain why no other amino acid can substitute for glycine.


Assuntos
Asparaginase/metabolismo , Glicina/metabolismo , Asparaginase/química , Asparaginase/genética , Asparagina/metabolismo , Biocatálise , Cristalografia por Raios X , Células HEK293 , Humanos , Concentração de Íons de Hidrogênio , Hidrólise , Simulação de Dinâmica Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Especificidade por Substrato
3.
FEBS J ; 279(11): 1915-28, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22429312

RESUMO

The enzyme choline kinase (CK), which catalyzes the phosphorylation of choline to phosphorylcholine in the presence of ATP, has an essential role in the biosynthesis of phosphatidylcholine, the major constituent of all mammalian cell membranes. CK is encoded by two separate genes expressing the three isoforms CKα1, CKα2 and CKß that are active as homodimeric or heterodimeric species. Metabolic changes observed in various cancer cell lines and tumors have been associated with differential and marked up-regulation of the CKα genes, and specific inhibition of CKα activity has been proposed as a potential anti-cancer strategy. As a result, less attention has been given to CKß and its interaction with CKα. With the aim of profiling the intracellular roles of CKα and CKß, we used RNA interference (RNAi) as a molecular approach to down-regulate the expression of CK in HeLa cells. Individual and simultaneous RNAi-based silencing of the CK α and ß isoforms was achieved using different combinations of knockdown strategies. Efficient knockdown was confirmed by immunodetection using our isoform-specific antibodies and by quantitative real-time PCR. Our analyses of the phenotypic consequences of CK depletion showed the expected lethal effect of CKα knockdown. However, CKß- and CKα + CKß-silenced cells had no aberrant phenotype. Therefore, our results support the hypothesis that the balance of the α and ß isoforms is critical for cancer cell survival. The suppression of the cancer cell killing effect of CKα silencing by simultaneous knockdown of both isoforms implies that a more effective CK-based anti-cancer strategy can be achieved by reducing cross-reactivity with CKß.


Assuntos
Colina Quinase/metabolismo , Regulação Neoplásica da Expressão Gênica , Inativação Gênica , Neoplasias/enzimologia , Apoptose , Ciclo Celular , Colina Quinase/genética , Células HeLa , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Fosforilcolina/metabolismo , Multimerização Proteica , RNA Interferente Pequeno/genética , Transdução de Sinais
4.
ChemMedChem ; 7(4): 663-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22278967

RESUMO

Choline kinase (ChoK) is the first enzyme in the CDP-choline pathway that synthesizes phosphatidylcholine, the major phospholipid in eukaryotic cell membranes. Human ChoK has three isoforms: ChoKα1, α2, and ß. Specific inhibition of ChoKα has been reported to selectively kill tumor cells. In this study, ten new symmetrical bis-pyridinium and bis-quinolinium derivatives were synthesized and tested for their ability to inhibit human ChoKα2. These compounds have electron-releasing groups at position 4 of the pyridinium or quinolinium rings. 1,1'-[(Butane-1,3-diylbis(benzene-1,4-diylmethylene)]bis[4-(4-bromo-N-methylanilino)pyridinium)] dibromide and 1,1'-(biphenyl-3,3'-diylmethylene)bis[7-chloro-4-(perhydroazepine-1-yl)quinolinium] dibromide were identified as highly potent ChoK inhibitors with IC(50) values of 80 nM. Kinetic enzymatic assays indicated a mixed and predominantly competitive mechanism of inhibition for these compounds, which exhibited strong antiproliferative activity (EC(50) 1 µM) against the human breast cancer SKBR3 cell line.


Assuntos
Neoplasias da Mama/tratamento farmacológico , Colina Quinase/antagonistas & inibidores , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Compostos de Quinolínio/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Inibidores Enzimáticos/síntese química , Feminino , Humanos , Cinética , Compostos de Piridínio/síntese química , Compostos de Piridínio/química , Compostos de Piridínio/farmacologia , Compostos de Quinolínio/síntese química , Relação Estrutura-Atividade
5.
Cell Signal ; 20(11): 2071-83, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18721873

RESUMO

Transcripts for the PDE4A10 cyclic AMP phosphodiesterase isoform are present in a wide variety of rat tissues including the heart. Sequence comparisons between the putative human and mouse promoters revealed a number of conserved regions including both an Sp1 and a CREB-binding site. The putative mouse PDE4A10 promoter was amplified from genomic DNA and sub-cloned into a luciferase reporter vector for investigation of activity in neonatal cardiac myocytes. Transfection with this construct identified a high level of luciferase expression in neonatal cardiac myocytes. Surprisingly, this activity was down-regulated by elevation of intracellular cAMP through a process involving PKA, but not EPAC, signalling. Such inhibition of the rodent PDE4A10 promoter activity in response to elevated cAMP levels is in contrast to the PDE4 promoters so far described. Site-directed mutagenesis revealed that the Sp1 binding site at promoter position -348 to -336 is responsible for the basal constitutive expression of murine PDE4A10. The conserved CREB-binding motif at position -370 to -363 also contributes to basal promoter activity but does not in itself confer cAMP inhibition upon the PDE4A10 promoter. EMSA analysis confirmed the authenticity of CREB and Sp1 binding sites. The transcriptional start site was identified to be an adenine residue at position -55 in the mouse PDE4A10 promoter. We present evidence that this novel down-regulation of PDE4A10 is mediated by the transcription factor ICER in a PKA dependent manner. The pool of cAMP in cardiac myocytes that down-regulates PDE4A10 is regulated by beta-adrenoceptor coupled adenylyl cyclase activity and via hydrolysis determined predominantly by the action of PDE4 (cAMP phosphodiesterase-4) and not PDE3 (cAMP phosphodiesterase-3). We suggest that increased cAMP may remodel cAMP-mediated signalling events by not only increasing the expression of specific PDE4 cAMP phosphodiesterases but also by down-regulating specific isoforms, such as is shown here for PDE4A10 in cardiac myocytes.


Assuntos
AMP Cíclico/farmacologia , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Regulação para Baixo/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Regiões Promotoras Genéticas , Animais , Animais Recém-Nascidos , Sequência de Bases , Sítios de Ligação , Colforsina/farmacologia , Sequência Conservada , AMP Cíclico/análogos & derivados , Modulador de Elemento de Resposta do AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Análise Mutacional de DNA , Ensaio de Desvio de Mobilidade Eletroforética , Perfilação da Expressão Gênica , Humanos , Camundongos , Dados de Sequência Molecular , Mutação/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Elementos de Resposta/genética , Fator de Transcrição Sp1/metabolismo , Sítio de Iniciação de Transcrição , Transcrição Gênica/efeitos dos fármacos
6.
FEBS Lett ; 582(5): 720-4, 2008 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-18258203

RESUMO

Intracellular phosphorylation of dCK on Ser-74 results in increased nucleoside kinase activity. We mimicked this phosphorylation by a Ser-74-Glu mutation in bacterially produced dCK and investigated kinetic parameters using various nucleoside substrates. The S74E mutation increases the k(cat) values 11-fold for dC, and 3-fold for the anti-cancer analogues dFdC and AraC. In contrast, the rate is decreased for the purine substrates. In HEK293 cells, we found that by comparing transiently transfected dCK(S74E)-GFP and wild-type dCK-GFP, mimicking the phosphorylation of Ser-74 has no effect on cellular localisation. We note that phosphorylation may represent a mechanism to enhance the catalytic activity of the relatively slow dCK enzyme.


Assuntos
Desoxicitidina Quinase/metabolismo , Desoxicitidina/análogos & derivados , Desoxicitidina/metabolismo , Mimetismo Molecular , Fosfosserina/metabolismo , Transporte Ativo do Núcleo Celular , Catálise , Linhagem Celular , Núcleo Celular/enzimologia , Desoxicitidina Quinase/química , Humanos , Espaço Intracelular/enzimologia , Cinética , Proteínas Mutantes/metabolismo , Fosforilação , Estrutura Secundária de Proteína , Transporte Proteico , Especificidade por Substrato
7.
EMBO Rep ; 8(11): 1061-7, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17901878

RESUMO

The beta-adrenergic receptor/cyclic AMP/protein kinase A (PKA) signalling pathway regulates heart rate and contractility. Here, we identified a supramolecular complex consisting of the sarcoplasmic reticulum Ca(2+)-ATPase (SERCA2), its negative regulator phospholamban (PLN), the A-kinase anchoring protein AKAP18delta and PKA. We show that AKAP18delta acts as a scaffold that coordinates PKA phosphorylation of PLN and the adrenergic effect on Ca(2+) re-uptake. Inhibition of the compartmentalization of this cAMP signalling complex by specific molecular disruptors interferes with the phosphorylation of PLN. This prevents the subsequent release of PLN from SERCA2, thereby affecting the Ca(2+) re-uptake into the sarcoplasmic reticulum induced by adrenergic stimuli.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Membrana/metabolismo , Miócitos Cardíacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Proteínas Adaptadoras de Transdução de Sinal , Sequência de Aminoácidos , Animais , Proteínas de Ligação ao Cálcio/genética , Proteínas de Transporte/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Proteínas de Membrana/genética , Dados de Sequência Molecular , Complexos Multiproteicos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Ratos , Retículo Sarcoplasmático/ultraestrutura , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Alinhamento de Sequência
8.
Eur J Cell Biol ; 85(7): 673-8, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16500722

RESUMO

A plethora of stimuli including hormones and neurotransmitters mediate a rise of the cellular level of cAMP and thereby activation of protein kinase A (PKA). PKA phosphorylates and thereby modulates the activity of a wide range of cellular targets. It is now appreciated that different stimuli induce the activation of PKA at specific sites where the kinase phosphorylates particular substrates in close proximity. The tethering of PKA to cellular compartments is facilitated by A kinase-anchoring proteins (AKAPs). The incorporation of phosphodiesterases (PDEs) into AKAP-based signalling complexes provides gradients of cAMP that regulate PKA activity locally. An example for a process depending on compartmentalised cAMP/PKA signalling is the arginine-vasopressin (AVP)-mediated water reabsorption in renal collecting duct principal cells. Upon activation through AVP, PKA phosphorylates the water channel aquaporin-2 (AQP-2) located on intracellular vesicles. The phosphorylation triggers the redistribution of AQP2 to the plasma membrane. AKAP-anchored PKA has been shown to be involved in AQP2 shuttling. Here, AKAP18 isoforms and members of the PDE4 family of PDEs are shown to be differentially localised in renal principal cells.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Túbulos Renais Coletores/citologia , Túbulos Renais Coletores/metabolismo , Distribuição Tecidual , Proteínas de Ancoragem à Quinase A , Animais , Aquaporina 2/metabolismo , Arginina Vasopressina/metabolismo , Compartimento Celular , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Isoenzimas/metabolismo , Túbulos Renais Coletores/ultraestrutura
9.
Biochem J ; 396(2): 297-306, 2006 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-16483255

RESUMO

PKA (protein kinase A) is tethered to subcellular compartments by direct interaction of its regulatory subunits (RI or RII) with AKAPs (A kinase-anchoring proteins). AKAPs preferentially bind RII subunits via their RII-binding domains. RII-binding domains form structurally conserved amphipathic helices with unrelated sequences. Their binding affinities for RII subunits differ greatly within the AKAP family. Amongst the AKAPs that bind RIIalpha subunits with high affinity is AKAP7delta [AKAP18delta; K(d) (equilibrium dissociation constant) value of 31 nM]. An N-terminally truncated AKAP7delta mutant binds RIIalpha subunits with higher affinity than the full-length protein presumably due to loss of an inhibitory region [Henn, Edemir, Stefan, Wiesner, Lorenz, Theilig, Schmidtt, Vossebein, Tamma, Beyermann et al. (2004) J. Biol. Chem. 279, 26654-26665]. In the present study, we demonstrate that peptides (25 amino acid residues) derived from the RII-binding domain of AKAP7delta bind RIIalpha subunits with higher affinity (K(d)=0.4+/-0.3 nM) than either full-length or N-terminally truncated AKAP7delta, or peptides derived from other RII binding domains. The AKAP7delta-derived peptides and stearate-coupled membrane-permeable mutants effectively disrupt AKAP-RII subunit interactions in vitro and in cell-based assays. Thus they are valuable novel tools for studying anchored PKA signalling. Molecular modelling indicated that the high affinity binding of the amphipathic helix, which forms the RII-binding domain of AKAP7delta, with RII subunits involves both the hydrophobic and the hydrophilic faces of the helix. Alanine scanning (25 amino acid peptides, SPOT technology, combined with RII overlay assays) of the RII binding domain revealed that hydrophobic amino acid residues form the backbone of the interaction and that hydrogen bond- and salt-bridge-forming amino acid residues increase the affinity of the interaction.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Membrana/metabolismo , Peptídeos/química , Ligação Proteica , Proteínas de Ancoragem à Quinase A , Proteínas Adaptadoras de Transdução de Sinal/química , Sequência de Aminoácidos , Aminoácidos/química , Aminoácidos/metabolismo , Animais , Sítios de Ligação , Células Cultivadas , Proteínas Quinases Dependentes de AMP Cíclico/química , Eletrofisiologia , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Proteínas de Membrana/química , Modelos Moleculares , Dados de Sequência Molecular , Peptídeos/metabolismo , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Subunidades Proteicas , Ratos , Alinhamento de Sequência , Fatores de Tempo
10.
Cell Signal ; 17(9): 1158-73, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15905070

RESUMO

We employ a novel, dominant negative approach to identify a key role for certain tethered cyclic AMP specific phosphodiesterase-4 (PDE4) isoforms in regulating cyclic AMP dependent protein kinase A (PKA) sub-populations in resting COS1 cells. A fraction of PKA is clearly active in resting COS1 cells and this activity increases when cells are treated with the selective PDE4 inhibitor, rolipram. Point mutation of a critical, conserved aspartate residue in the catalytic site of long PDE4A4, PDE4B1, PDE4C2 and PDE4D3 isoforms renders them catalytically inactive. Overexpressed in resting COS1 cells, catalytically inactive forms of PDE4C2 and PDE4D3, but not PDE4A4 and PDE4B1, are constitutively PKA phosphorylated while overexpressed active versions of all these isoforms are not. Inactive and active versions of all these isoforms are PKA phosphorylated in cells where protein kinase A is maximally activated with forskolin and IBMX. By contrast, rolipram challenge of COS1 cells selectively triggers the PKA phosphorylation of recombinant, active PDE4D3 and PDE4C2 but not recombinant, active PDE4A4 and PDE4B1. Purified, recombinant PDE4D3 and PDE4A4 show a similar dose-dependency for in vitro phosphorylation by PKA. Disruption of the tethering of PKA type-II to PKA anchor proteins (AKAPs), achieved using the peptide Ht31, prevents inactive forms of PDE4C2 and PDE4D3 being constitutively PKA phosphorylated in resting cells as does siRNA-mediated knockdown of PKA-RII, but not PKA-RI. PDE4C2 and PDE4D3 co-immunoprecipitate from COS1 cell lysates with 250 kDa and 450 kDa AKAPs that tether PKA type-II and not PKA type-I. PKA type-II co-localises with AKAP450 in the centrosomal region of COS1 cells. The perinuclear distribution of recombinant, inactive PDE4D3, but not inactive PDE4A4, overlaps with AKAP450 and PKA type-II. The distribution of PKA phosphorylated inactive PDE4D3 also overlaps with that of AKAP450 in the centrosomal region of COS1 cells. We propose that a novel role for PDE4D3 and PDE4C2 is to gate the activation of AKAP450-tethered PKA type-II localised in the perinuclear region under conditions of basal cAMP generation in resting cells.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Centrossomo/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/biossíntese , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , 3',5'-AMP Cíclico Fosfodiesterases/genética , Animais , Células COS , Chlorocebus aethiops , Proteína Quinase Tipo II Dependente de AMP Cíclico , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Ativação Enzimática , Isoenzimas/genética , Isoenzimas/metabolismo , Microscopia Confocal , Mutação , Inibidores de Fosfodiesterase/farmacologia , Interferência de RNA , Rolipram/farmacologia
11.
Circ Res ; 95(1): 67-75, 2004 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-15178638

RESUMO

Cardiac myocytes have provided a key paradigm for the concept of the compartmentalized cAMP generation sensed by AKAP-anchored PKA. Phosphodiesterases (PDEs) provide the sole route for degrading cAMP in cells and are thus poised to regulate intracellular cAMP gradients. PDE3 and PDE4 represent the major cAMP degrading activities in rat ventriculocytes. By performing real-time imaging of cAMP in situ, we establish the hierarchy of these PDEs in controlling cAMP levels in basal conditions and on stimulation with a beta-adrenergic receptor agonist. PDE4, rather than PDE3, appears to be responsible for modulating the amplitude and duration of the cAMP response to beta-agonists. PDE3 and PDE4 localize to distinct compartments and this may underpin their different functional roles. Our findings indicate the importance of distinctly localized PDE isoenzymes in determining compartmentalized cAMP signaling.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/fisiologia , AMP Cíclico/metabolismo , Miócitos Cardíacos/enzimologia , 3',5'-AMP Cíclico Fosfodiesterases/análise , 3',5'-AMP Cíclico Fosfodiesterases/antagonistas & inibidores , Agonistas alfa-Adrenérgicos/farmacologia , Animais , Animais Recém-Nascidos , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Transferência Ressonante de Energia de Fluorescência , Norepinefrina/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Ratos
12.
J Biol Chem ; 278(49): 49230-8, 2003 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-14500724

RESUMO

Isoproterenol challenge of Hek-B2 cells causes a transient recruitment of the endogenous PDE4D isoforms found in these cells, namely PDE4D3 and PDE4D5, to the membrane fraction. PDE4D5 provides around 80% of the total PDE4D protein so recruited, although it only comprises about 40% of the total PDE4D protein in Hek-B2 cells. PDE4D5 provides about 80% of the total PDE4D protein found associated with beta-arrestins immunopurified from Hek-B2, COS1, and A549 cells as well as cardiac myocytes, whereas its overall level in these cells is between 15 and 50% of the total PDE4D protein. Truncation analyses indicate that two sites in PDE4D5 are involved in mediating its interaction with beta-arrestins, one associated with the common PDE4 catalytic region and the other located within its unique amino-terminal region. Truncation analyses indicate that two sites in beta-arrestin 2 are involved in mediating its interaction with PDE4D5, one associated with its extreme amino-terminal region and the other located within the carboxyl-terminal domain of the protein. We suggest that the unique amino-terminal region of PDE4D5 allows it to preferentially interact with beta-arrestins. This specificity appears likely to account for the preferential recruitment of PDE4D5, compared with PDE4D3, to membranes of Hek-B2 cells and cardiac myocytes upon challenge with isoproterenol.


Assuntos
Arrestinas/metabolismo , Isoenzimas/metabolismo , Diester Fosfórico Hidrolases/metabolismo , Sequência de Aminoácidos , Linhagem Celular , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3 , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Humanos , Isoenzimas/química , Dados de Sequência Molecular , Diester Fosfórico Hidrolases/química , Ligação Proteica , beta-Arrestina 2 , beta-Arrestinas
13.
Biochem J ; 370(Pt 2): 429-38, 2003 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-12441002

RESUMO

We have isolated cDNAs encoding PDE4B4, a new cAMP-specific phosphodiesterase (PDE4) isoform with novel properties. The amino acid sequence of PDE4B4 demonstrates that it is encoded by the PDE4B gene, but that it differs from the previously isolated PDE4B1, PDE4B2 and PDE4B3 isoforms by the presence of a novel N-terminal region of 17 amino acids. PDE4B4 contains both of the upstream conserved region 1 (UCR1) and UCR2 regulatory units that are characteristic of 'long' PDE4 isoforms. RNase protection demonstrated that PDE4B4 mRNA is expressed preferentially in liver, skeletal muscle and various regions of the brain, which differs from the pattern of tissue distribution of the other known PDE4B long forms, PDE4B1 and PDE4B3. Expression of PDE4B4 cDNA in COS7 cells produced a protein of 85 kDa under denaturing conditions. Subcellular fractionation of recombinant, COS7-cell expressed PDE4B4 showed that the protein was localized within the cytosol, which was confirmed by confocal microscopic analysis of living COS7 cells transfected with a green fluorescent protein-PDE4B4 chimaera. PDE4B4 exhibited a K(m) for cAMP of 5.4 microM and a V(max), relative to that of the long PDE4B1 isoform, of 2.1. PDE4B4 was inhibited by the prototypical PDE4 inhibitor rolipram [4-[3-(cyclopentoxyl)-4-methoxyphenyl]-2-pyrrolidinone] with an IC(50) of 83 nM. Treatment of COS7 cells with forskolin, to elevate cAMP levels, produced activation of PDE4B4, which was associated with the phosphorylation of PDE4B4 on Ser-56 within UCR1. The unique tissue distribution and intracellular targeting of PDE4B4 suggests that this isoform may have a distinct functional role in regulating cAMP levels in specific cell types.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Encéfalo/metabolismo , Células COS , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , DNA Complementar/isolamento & purificação , Ativação Enzimática/fisiologia , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Camundongos , Dados de Sequência Molecular , Especificidade de Órgãos , Ratos
14.
Br J Pharmacol ; 136(3): 421-33, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12023945

RESUMO

1. Challenge of COS1 cells with the adenylyl cyclase activator forskolin led to the activation of recombinant PDE4A8, PDE4B1, PDE4C2 and PDE4D5 cAMP-specific phosphodiesterase long isoforms. 2. Forskolin challenge did not activate mutant long PDE4 isoforms where the serine target residue (STR) within the protein kinase A (PKA) consensus phosphorylation site in Upstream Conserved Region 1 (UCR1) was mutated to alanine. 3. The PKA inhibitor, H89, ablated forskolin activation of wild-type long PDE4 isoforms. 4. Activated PKA caused the in vitro phosphorylation of recombinant wild-type long PDE4 isoforms, but not those where the STR was mutated to alanine. 5. An antiserum specific for the phosphorylated form of the STR detected a single immunoreactive band for recombinant long PDE4 isoforms expressed in COS1 cells challenged with forskolin. This was not evident in forskolin-challenged cells treated with H89. Neither was it evident in forskolin-challenged cells expressing long isoforms where the STR had been mutated to alanine. 6. In transfected COS cells challenged with forskolin, only the phosphorylated PDE4D3 long form showed a decrease in mobility in Western blotting analysis. This decreased mobility of PDE4D3 was ablated upon mutation of either of the two serine targets for PKA phosphorylation in this isoform, namely Ser54 in UCR1 and Ser13 in the isoform-specific N-terminal region. 7. Activation by forskolin challenge did not markedly alter the sensitivity of PDE4A8, PDE4B1, PDE4C2 and PDE4D5 to inhibition by rolipram. 8. Long PDE4 isoforms from all four sub-families can be phosphorylated by protein kinase A (PKA). This leads to an increase in their activity and may thus contribute to cellular desensitization processes in cells where these isoforms are selectively expressed.


Assuntos
3',5'-AMP Cíclico Fosfodiesterases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Serina/metabolismo , 3',5'-AMP Cíclico Fosfodiesterases/genética , 3',5'-AMP Cíclico Fosfodiesterases/imunologia , Sequência de Aminoácidos , Animais , Células COS , Sequência Conservada , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4 , Eletroforese em Gel de Poliacrilamida , Ativação Enzimática , Feminino , Soros Imunes , Isoenzimas/genética , Isoenzimas/imunologia , Isoenzimas/metabolismo , Medições Luminescentes , Mutagênese Sítio-Dirigida , Inibidores de Fosfodiesterase/farmacologia , Fosforilação , Coelhos , Rolipram/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...