Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
MAGMA ; 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38743376

RESUMO

PURPOSE: To investigate the effect of respiratory motion in terms of signal loss in prostate diffusion-weighted imaging (DWI), and to evaluate the usage of partial Fourier in a free-breathing protocol in a clinically relevant b-value range using both single-shot and multi-shot acquisitions. METHODS: A controlled breathing DWI acquisition was first employed at 3 T to measure signal loss from deep breathing patterns. Single-shot and multi-shot (2-shot) acquisitions without partial Fourier (no pF) and with partial Fourier (pF) factors of 0.75 and 0.65 were employed in a free-breathing protocol. The apparent SNR and ADC values were evaluated in 10 healthy subjects to measure if low pF factors caused low apparent SNR or overestimated ADC. RESULTS: Controlled breathing experiments showed a difference in signal coefficient of variation between shallow and deep breathing. In free-breathing single-shot acquisitions, the pF 0.65 scan showed a significantly (p < 0.05) higher apparent SNR than pF 0.75 and no pF in the peripheral zone (PZ) of the prostate. In the multi-shot acquisitions in the PZ, pF 0.75 had a significantly higher apparent SNR than 0.65 pF and no pF. The single-shot pF 0.65 scan had a significantly lower ADC than single-shot no pF. CONCLUSION: Deep breathing patterns can cause intravoxel dephasing in prostate DWI. For single-shot acquisitions at a b-value of 800 s/mm2, any potential risks of motion-related artefacts at low pF factors (pF 0.65) were outweighed by the increase in signal from a lower TE, as shown by the increase in apparent SNR. In multi-shot acquisitions however, the minimum pF factor should be larger, as shown by the lower apparent SNR at low pF factors.

2.
NMR Biomed ; : e5147, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38561247

RESUMO

Partial Fourier encoding is popular in single-shot (ss) diffusion-weighted (DW) echo planar imaging (EPI) because it enables a shorter echo time (TE) and, hence, improves the signal-to-noise-ratio. Motion during diffusion encoding causes k-space shifting and dispersion, which compromises the quality of the homodyne reconstruction. This work provides a comprehensive understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data in the presence of motion-induced phase and proposes the motion-induced phase-corrected homodyne (mpc-hdyne) reconstruction method to ameliorate these artifacts. Simulations with different types of motion-induced phase were performed to provide an understanding of the potential artifacts that occur in the homodyne reconstruction of partial Fourier ss-DW-EPI data. To correct for the artifacts, the mpc-hdyne reconstruction is proposed. The algorithm recenters k-space, updates the partial Fourier factor according to detected global k-space shifts, and removes low-resolution nonlinear phase before the conventional homodyne reconstruction. The mpc-hdyne reconstruction is tested on both simulation and in vivo data. Motion-induced phase can cause signal overestimation, worm artifacts, and signal loss in partial Fourier ss-DW-EPI data with the conventional homodyne reconstruction. Simulation and in vivo data showed that the proposed mpc-hdyne reconstruction ameliorated artifacts, yielding higher quality DW images compared with conventional homodyne reconstruction. Based on the understanding of the artifacts in homodyne reconstruction of partial Fourier ss-DW-EPI data, the mpc-hdyne reconstruction was proposed and showed superior performance compared with the conventional homodyne reconstruction on both simulation and in vivo data.

3.
Tomography ; 9(5): 1839-1856, 2023 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-37888738

RESUMO

Cardiac motion causes unpredictable signal loss in respiratory-triggered diffusion-weighted magnetic resonance imaging (DWI) of the liver, especially inside the left lobe. The left liver lobe may thus be frequently neglected in the clinical evaluation of liver DWI. In this work, a data-driven algorithm that relies on the statistics of the signal in the left liver lobe to mitigate the motion-induced signal loss is presented. The proposed data-driven algorithm utilizes the exclusion of severely corrupted images with subsequent spatially dependent image scaling based on a signal-loss model to correctly combine the multi-average diffusion-weighted images. The signal in the left liver lobe is restored and the liver signal is more homogeneous after applying the proposed algorithm. Furthermore, overestimation of the apparent diffusion coefficient (ADC) in the left liver lobe is reduced. The proposed algorithm can therefore contribute to reduce the motion-induced bias in DWI of the liver and help to increase the diagnostic value of DWI in the left liver lobe.


Assuntos
Artefatos , Fígado , Estudos Retrospectivos , Reprodutibilidade dos Testes , Fígado/diagnóstico por imagem , Movimento (Física) , Imagem de Difusão por Ressonância Magnética/métodos
4.
Eur Radiol ; 33(10): 6892-6901, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37133518

RESUMO

OBJECTIVES: To examine the effect of high-b-value computed diffusion-weighted imaging (cDWI) on solid lesion detection and classification in pancreatic intraductal papillary mucinous neoplasm (IPMN), using endoscopic ultrasound (EUS) and histopathology as a standard of reference. METHODS: Eighty-two patients with known or suspected IPMN were retrospectively enrolled. Computed high-b-value images at b = 1000 s/mm2 were calculated from standard (b = 0, 50, 300, and 600 s/mm2) DWI images for conventional full field-of-view (fFOV, 3 × 3 × 4 mm3 voxel size) DWI. A subset of 39 patients received additional high-resolution reduced-field-of-view (rFOV, 2.5 × 2.5 × 3 mm3 voxel size) DWI. In this cohort, rFOV cDWI was compared against fFOV cDWI additionally. Two experienced radiologists evaluated (Likert scale 1-4) image quality (overall image quality, lesion detection and delineation, fluid suppression within the lesion). In addition, quantitative image parameters (apparent signal-to-noise ratio (aSNR), apparent contrast-to-noise ratio (aCNR), contrast ratio (CR)) were assessed. Diagnostic confidence regarding the presence/absence of diffusion-restricted solid nodules was assessed in an additional reader study. RESULTS: High-b-value cDWI at b = 1000 s/mm2 outperformed acquired DWI at b = 600 s/mm2 regarding lesion detection, fluid suppression, aCNR, CR, and lesion classification (p = < .001-.002). Comparing cDWI from fFOV and rFOV revealed higher image quality in high-resolution rFOV-DWI compared to conventional fFOV-DWI (p ≤ .001-.018). High-b-value cDWI images were rated non-inferior to directly acquired high-b-value DWI images (p = .095-.655). CONCLUSIONS: High-b-value cDWI may improve the detection and classification of solid lesions in IPMN. Combining high-resolution imaging and high-b-value cDWI may further increase diagnostic precision. CLINICAL RELEVANCE STATEMENT: This study shows the potential of computed high-resolution high-sensitivity diffusion-weighted magnetic resonance imaging for solid lesion detection in pancreatic intraductal papillary mucinous neoplasia (IPMN). The technique may enable early cancer detection in patients under surveillance. KEY POINTS: • Computed high-b-value diffusion-weighted imaging (cDWI) may improve the detection and classification of intraductal papillary mucinous neoplasms (IPMN) of the pancreas. • cDWI calculated from high-resolution imaging increases diagnostic precision compared to cDWI calculated from conventional-resolution imaging. • cDWI has the potential to strengthen the role of MRI for screening and surveillance of IPMN, particularly in view of the rising incidence of IPMNs combined with now more conservative therapeutic approaches.


Assuntos
Neoplasias Intraductais Pancreáticas , Neoplasias Pancreáticas , Humanos , Estudos Retrospectivos , Neoplasias Pancreáticas/diagnóstico por imagem , Razão Sinal-Ruído , Imagem de Difusão por Ressonância Magnética/métodos , Pâncreas
5.
Magn Reson Med ; 89(1): 144-160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36098347

RESUMO

PURPOSE: To assess the effect of respiratory motion and cardiac driven pulsation in renal DWI and to examine asymmetrical velocity-compensated diffusion encoding waveforms for robust ADC mapping in the kidneys. METHODS: The standard monopolar Stejskal-Tanner pulsed gradient spin echo (pgse) and the asymmetric bipolar velocity-compensated (asym-vc) diffusion encoding waveforms were used for coronal renal DWI at 3T. The robustness of the ADC quantification in the kidneys was tested with the aforementioned waveforms in respiratory-triggered and breath-held cardiac-triggered scans at different trigger delays in 10 healthy subjects. RESULTS: The pgse waveform showed higher ADC values in the right kidney at short trigger delays in comparison to longer trigger delays in the respiratory triggered scans when the diffusion gradient was applied in the feet-head (FH) direction. The coefficient of variation over all respiratory trigger delays, averaged over all subjects was 0.15 for the pgse waveform in the right kidney when diffusion was measured in the FH direction; the corresponding coefficient of variation for the asym-vc waveform was 0.06. The effect of cardiac driven pulsation was found to be small in comparison to the effect of respiratory motion. CONCLUSION: Short trigger delays in respiratory-triggered scans can cause higher ADC values in comparison to longer trigger delays in renal DWI, especially in the right kidney when diffusion is measured in the FH direction. The asym-vc waveform can reduce ADC variation due to respiratory motion in respiratory-triggered scans at the cost of reduced SNR compared to the pgse waveform.


Assuntos
Imagem de Difusão por Ressonância Magnética , Rim , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Movimento (Física) , Rim/diagnóstico por imagem , Coração/diagnóstico por imagem , Difusão , Reprodutibilidade dos Testes
6.
Cancers (Basel) ; 14(3)2022 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-35158737

RESUMO

BACKGROUND: Our purpose was to investigate the potential of high-resolution, high b-value computed DWI (cDWI) in pancreatic ductal adenocarcinoma (PDAC) detection. MATERIALS AND METHODS: We retrospectively enrolled 44 patients with confirmed PDAC. Respiratory-triggered, diffusion-weighted, single-shot echo-planar imaging (ss-EPI) with both conventional (i.e., full field-of-view, 3 × 3 × 4 mm voxel size, b = 0, 50, 300, 600 s/mm2) and high-resolution (i.e., reduced field-of-view, 2.5 × 2.5 × 3 mm voxel size, b = 0, 50, 300, 600, 1000 s/mm2) imaging was performed for suspected PDAC. cDWI datasets at b = 1000 s/mm2 were generated for the conventional and high-resolution datasets. Three radiologists were asked to subjectively rate (on a Likert scale of 1-4) the following metrics: image quality, lesion detection and delineation, and lesion-to-pancreas intensity relation. Furthermore, the following quantitative image parameters were assessed: apparent signal-to-noise ratio (aSNR), contrast-to-noise ratio (aCNR), and lesion-to-pancreas contrast ratio (CR). RESULTS: High-resolution, high b-value computed DWI (r-cDWI1000) enabled significant improvement in lesion detection and a higher incidence of a high lesion-to-pancreas intensity relation (type 1, clear hyperintense) compared to conventional high b-value computed and high-resolution high b-value acquired DWI (f-cDWI1000 and r-aDWI1000, respectively). Image quality was rated inferior in the r-cDWI1000 datasets compared to r-aDWI1000. Furthermore, the aCNR and CR were higher in the r-cDWI1000 datasets than in f-cDWI1000 and r-aDWI1000. CONCLUSION: High-resolution, high b-value computed DWI provides significantly better visualization of PDAC compared to the conventional high b-value computed and high-resolution high b-value images acquired by DWI.

7.
Magn Reson Imaging ; 87: 1-6, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34808306

RESUMO

OBJECTIVES: To prospectively evaluate an L1 regularized iterative SENSE reconstruction (L1-R SENSE) to eliminate band-like artifacts frequently seen with parallel imaging (SENSE) at high acceleration factors in high resolution diffusion weighted magnetic resonance imaging of the pancreas. METHODS: Fourteen patients with pancreatic ductal adenocarcinoma (PDAC) underwent respiratory triggered DWI ss-EPI at a resolution of 2.5 × 2.5 × 3 mm3 with uniform undersampling in the phase encoding direction (AP axis) with an acceleration factor of 4. Data were reconstructed using the standard SENSE reconstruction routine of the vendor and an iterative SENSE reconstruction employing L1 regularization after a wavelet sparsifying transformation (L1-R SENSE). Retrospective reconstruction of the data with a lower number of averages was performed using both reconstruction methods. Two radiologists independently assessed noise artifacts, anatomical details and image quality (IQ) subjectively with a 4-point scale. Apparent diffusion coefficient (ADC) and covariance (CV) of ADC estimated from images reconstructed at a different number of averages for PDAC and the normal pancreas were assessed. RESULTS: L1-R SENSE resulted in higher IQ and less noise artifacts than SENSE. Anatomical details were significantly higher for SENSE in one reader. Mean ADC of PDAC and normal pancreas were significantly higher for L1-R SENSE than SENSE. L1-R SENSE revealed lower CV of ADC for normal pancreas compared to SENSE, whereas no difference was noted for PDAC. CONCLUSION: Compared with traditional SENSE reconstruction, L1-R SENSE effectively reduces band-like noise and improves the robustness of the ADC estimation from acquisitions using single-shot DW-EPI of the pancreas.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Artefatos , Imagem de Difusão por Ressonância Magnética/métodos , Imagem Ecoplanar/métodos , Humanos , Pâncreas/diagnóstico por imagem , Pâncreas/patologia , Reprodutibilidade dos Testes , Estudos Retrospectivos
8.
MAGMA ; 35(5): 827-841, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34894335

RESUMO

OBJECTIVE : To experimentally characterize the effectiveness of a gradient nonlinearity correction method in removing ADC bias for different motion-compensated diffusion encoding waveforms. METHODS: The diffusion encoding waveforms used were the standard monopolar Stejskal-Tanner pulsed gradient spin echo (pgse) waveform, the symmetric bipolar velocity-compensated waveform (sym-vc), the asymmetric bipolar velocity-compensated waveform (asym-vc) and the asymmetric bipolar partial velocity-compensated waveform (asym-pvc). The effectiveness of the gradient nonlinearity correction method using the spherical harmonic expansion of the gradient coil field was tested with the aforementioned waveforms in a phantom and in four healthy subjects. RESULTS: The gradient nonlinearity correction method reduced the ADC bias in the phantom experiments for all used waveforms. The range of the ADC values over a distance of ± 67.2 mm from isocenter reduced from 1.29 × 10-4 to 0.32 × 10-4 mm2/s for pgse, 1.04 × 10-4 to 0.22 × 10-4 mm2/s for sym-vc, 1.22 × 10-4 to 0.24 × 10-4 mm2/s for asym-vc and 1.07 × 10-4 to 0.11 × 10-4 mm2/s for asym-pvc. The in vivo results showed that ADC overestimation due to motion or bright vessels can be increased even further by the gradient nonlinearity correction. CONCLUSION: The investigated gradient nonlinearity correction method can be used effectively with various motion-compensated diffusion encoding waveforms. In coronal liver DWI, ADC errors caused by motion and residual vessel signal can be increased even further by the gradient nonlinearity correction.


Assuntos
Imagem de Difusão por Ressonância Magnética , Processamento de Imagem Assistida por Computador , Humanos , Imagem de Difusão por Ressonância Magnética/métodos , Processamento de Imagem Assistida por Computador/métodos , Fígado/diagnóstico por imagem , Movimento (Física)
9.
Acad Radiol ; 28 Suppl 1: S234-S243, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33390324

RESUMO

RATIONALE AND OBJECTIVES: To investigate the effects of a reduced field-of-view (rFOV) acquisition in diffusion-weighted magnetic resonance imaging of the pancreas. MATERIALS AND METHODS: We enrolled 153 patients who underwent routine clinical MRI work-up including respiratory-triggered diffusion-weighted single-shot echo-planar imaging (DWI) with full field-of-view (fFOV, 3 × 3 × 4 mm3 voxel size) and reduced field-of-view (rFOV, 2.5 × 2.5 × 3 mm3 voxel size) for suspected pancreatic pathology. Two experienced radiologists were asked to subjectively rate (Likert Scale 1-4) image quality (overall image quality, lesion conspicuity, anatomical detail, artifacts). In addition, quantitative image parameters were assessed (apparent diffusion coefficient, apparent signal to noise ratio, apparent contrast to noise ratio [CNR]). RESULTS: All subjective metrics of image quality were rated in favor of rFOV DWI images compared to fFOV DWI images with substantial-to-high inter-rater reliability. Calculated ADC values of normal pancreas, pancreatic pathologies and reference tissues revealed no differences between both sequences. Whereas the apparent signal to noise ratio was higher in fFOV images, apparent CNR was higher in rFOV images. CONCLUSION: rFOV DWI provides higher image quality and apparent CNR values, favorable in the analysis of pancreatic pathologies.


Assuntos
Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Artefatos , Humanos , Pâncreas/diagnóstico por imagem , Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...