Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
JPEN J Parenter Enteral Nutr ; 45(2): 295-302, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32291784

RESUMO

BACKGROUND: Intralipid (ILP), a lipid emulsion, protects organs against ischemia/reperfusion (IR) injury. We hypothesized that ILP activates endothelial nitric oxide synthase (eNOS) and increases NO release from endothelial cells (ECs) through a fatty-acid translocase cluster of differentiation (CD36) mediated endocytotic mechanism, acting as a potentially protective paracrine signal during oxidative stress. METHODS: Human umbilical-vein ECs were exposed to 1% ILP for 2 hours followed by oxidative stress with 0.2-mM hydrogen peroxide for 2 hours. Western blots were conducted with anti-CD36, dynamin-2, src-kinase-1, eNOS, and phospho-eNOS; equal protein loading was confirmed with ß-actin. CD36 immunoprecipitation was probed for caveolin-1 to determine if CD36 and caveolin-1 were complexed on the cell membrane. NO was measured by fluorescence of ECs. RESULTS: ILP caused a 227% increase in CD36 expression vs controls. Immunoprecipitation indicated a CD36/caveolin-1 complex on ECs' membrane with exposure to ILP. Dynamin-2 increased 52% and src-kinase-1 340% after ILP treatment vs control cells. eNOS phosphorylation was confirmed by a 63% increase in the phospho-eNOS/eNOS ratio in ILP-treated cells, and NO fluorescence increased 102%. CONCLUSION: ILP enters ECs via endocytosis by a CD36/caveolin-1 cell membrane receptor complex, which in turn is pulled into the cell by dynamin-2 activity. Upregulation of src-kinase-1 and eNOS phosphorylation suggest downstream mediators. Subsequent NO release from ECs serve as a paracrine signal to neighboring cells for protection against IR injury. Student t-test was utilized for single comparisons and analysis of variance with Bonferroni-Dunn post hoc modification for multiple comparisons; P < .05 was considered statistically significant.


Assuntos
Células Endoteliais , Óxido Nítrico , Células Cultivadas , Emulsões , Células Endoteliais/metabolismo , Humanos , Óxido Nítrico Sintase Tipo III/metabolismo , Estresse Oxidativo , Fosfolipídeos , Fosforilação , Óleo de Soja
2.
J Appl Physiol (1985) ; 120(8): 876-88, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26796753

RESUMO

Skeletal muscle-specific liver kinase B1 (LKB1) knockout mice (skmLKB1-KO) exhibit elevated mitogen-activated protein kinase (MAPK) signaling after treadmill running. MAPK activation is also associated with inflammation-related signaling in skeletal muscle. Since exercise can induce muscle damage, and inflammation is a response triggered by damaged tissue, we therefore hypothesized that LKB1 plays an important role in dampening the inflammatory response to muscle contraction, and that this may be due in part to increased susceptibility to muscle damage with contractions in LKB1-deficient muscle. Here we studied the inflammatory response and muscle damage with in situ muscle contraction or downhill running. After in situ muscle contractions, the phosphorylation of both NF-κB and STAT3 was increased more in skmLKB1-KO vs. wild-type (WT) muscles. Analysis of gene expression via microarray and RT-PCR shows that expression of many inflammation-related genes increased after contraction only in skmLKB1-KO muscles. This was associated with mild skeletal muscle fiber membrane damage in skmLKB1-KO muscles. Gene markers of oxidative stress were also elevated in skmLKB1-KO muscles after contraction. Using the downhill running model, we observed significantly more muscle damage after running in skmLKB1-KO mice, and this was associated with greater phosphorylation of both Jnk and STAT3 and increased expression of SOCS3 and Fos. In conclusion, we have shown that the lack of LKB1 in skeletal muscle leads to an increased inflammatory state in skeletal muscle that is exacerbated by muscle contraction. Increased susceptibility of the muscle to damage may underlie part of this response.


Assuntos
Expressão Gênica/genética , Inflamação/genética , Contração Muscular/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Quinases Ativadas por AMP , Animais , Teste de Esforço/métodos , Feminino , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , NF-kappa B/genética , NF-kappa B/metabolismo , Estresse Oxidativo/genética , Fosforilação/genética , Condicionamento Físico Animal/fisiologia , Proteínas Serina-Treonina Quinases/genética , Corrida/fisiologia , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...