Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 16(12): 7521-7529, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27802056

RESUMO

Germanium-tin alloy nanowires hold promise as silicon-compatible optoelectronic elements with the potential to achieve a direct band gap transition required for efficient light emission. In contrast to Ge1-xSnx epitaxial thin films, free-standing nanowires deposited on misfitting germanium or silicon substrates can avoid compressive, elastic strains that inhibit formation of a direct gap. We demonstrate strong room temperature photoluminescence, consistent with band edge emission from both Ge core nanowires, elastically strained in tension, and the almost unstrained Ge1-xSnx shells grown around them. Low-temperature chemical vapor deposition of these core-shell structures was achieved using standard precursors, resulting in Sn incorporation that significantly exceeds the bulk solubility limit in germanium.

2.
Proc Natl Acad Sci U S A ; 102(45): 16141-5, 2005 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-16263931

RESUMO

An oxygen-assisted hydrocarbon chemical vapor deposition method is developed to afford large-scale, highly reproducible, ultra-high-yield growth of vertical single-walled carbon nanotubes (V-SWNTs). It is revealed that reactive hydrogen species, inevitable in hydrocarbon-based growth, are damaging to the formation of sp(2)-like SWNTs in a diameter-dependent manner. The addition of oxygen scavenges H species and provides a powerful control over the C/H ratio to favor SWNT growth. The revelation of the roles played by hydrogen and oxygen leads to a unified and universal optimum-growth condition for SWNTs. Further, a versatile method is developed to form V-SWNT films on any substrate, lifting a major substrate-type limitation for aligned SWNTs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...