Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(15): 6039-43, 2009 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-19369212

RESUMO

The recent development of microfluidic devices allows the investigation and manipulation of individual liquid microdroplets, capsules, and cells. The collective behavior of several red blood cells (RBCs) or microcapsules in narrow capillaries determines their flow-induced morphology, arrangement, and effective viscosity. Of fundamental interest here is the relation between the flow behavior and the elasticity and deformability of these objects, their long-range hydrodynamic interactions in microchannels, and thermal membrane undulations. We study these mechanisms in an in silico model, which combines a particle-based mesoscale simulation technique for the fluid hydrodynamics with a triangulated-membrane model. The 2 essential control parameters are the volume fraction of RBCs (the tube hematocrit, H(T)), and the flow velocity. Our simulations show that already at very low H(T), the deformability of RBCs implies a flow-induced cluster formation above a threshold flow velocity. At higher H(T) values, we predict 3 distinct phases: one consisting of disordered biconcave-disk-shaped RBCs, another with parachute-shaped RBCs aligned in a single file, and a third with slipper-shaped RBCs arranged as 2 parallel interdigitated rows. The deformation-mediated clustering and the arrangements of RBCs and microcapsules are relevant for many potential applications in physics, biology, and medicine, such as blood diagnosis and cell sorting in microfluidic devices.


Assuntos
Capilares , Simulação por Computador , Eritrócitos , Lipossomos , Microcirculação , Elasticidade , Hematócrito , Técnicas de Diluição do Indicador , Técnicas Analíticas Microfluídicas , Pressão , Reologia
2.
J Chem Phys ; 128(3): 034502, 2008 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-18205505

RESUMO

Nonequilibrium molecular dynamics simulations are performed on a dense simple dipolar fluid under a planar Couette shear flow. Shear generates heat, which is removed by thermostatting terms added to the equations of motion of the fluid particles. The spatial structure of simple fluids at high shear rates is known to depend strongly on the thermostatting mechanism chosen. Kinetic thermostats are either biased or unbiased: biased thermostats neglect the existence of secondary flows that appear at high shear rates superimposed upon the linear velocity profile of the fluid. Simulations that employ a biased thermostat produce a string phase where particles align in strings with hexagonal symmetry along the direction of the flow. This phase is known to be a simulation artifact of biased thermostatting, and has not been observed by experiments on colloidal suspensions under shear flow. In this paper, we investigate the possibility of using a suitably directed electric field, which is coupled to the dipole moments of the fluid particles, to stabilize the string phase. We explore several thermostatting mechanisms where either the kinetic or configurational fluid degrees of freedom are thermostated. Some of these mechanisms do not yield a string phase, but rather a shear-thickening phase; in this case, we find the influence of the dipolar interactions and external field on the packing structure, and in turn their influence on the shear viscosity at the onset of this shear-thickening regime.

3.
J Chem Phys ; 124(6): 64906, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16483243

RESUMO

A new mesoscopic membrane model is developed in order to examine long-wavelength structural and dynamical membrane phenomena. Two different explicit mesoscopic solvent models are employed. The first mesoscopic solvent is denoted the big liquid oscillating blob system, which is parametrized to model water at a coarse-grained level and is motivated by a Langevin-like approach; the resulting membrane dynamics predict a solvent viscosity dependence consistent with the known viscosity of water. The second mesoscopic solvent is a Weeks-Chandler-Anderson model. Here, it is found that the correct mesoscopic hydrodynamic scaling of the membrane undulation dynamics is still preserved, although accelerated. When the behavior of the two membranes in close proximity to one another is examined, very little correlated motion is observed. However, the theoretically predicted scaling of the entropic undulation energy is confirmed, demonstrating that the entropic interaction between two membranes becomes increasingly repulsive with decreasing separation.


Assuntos
Algoritmos , Bicamadas Lipídicas/química , Fluidez de Membrana , Simulação por Computador , Difusão , Entropia , Modelos Biológicos , Solventes/química , Propriedades de Superfície
4.
Biophys J ; 88(6): 3855-69, 2005 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15792968

RESUMO

Domain formation is modeled on the surface of giant unilamellar vesicles using a Landau field theory model for phase coexistence coupled to elastic deformation mechanics (e.g., membrane curvature). Smooth particle applied mechanics, a form of smoothed particle continuum mechanics, is used to solve either the time-dependent Landau-Ginzburg or Cahn-Hilliard free-energy models for the composition dynamics. At the same time, the underlying elastic membrane is modeled using smooth particle applied mechanics, resulting in a unified computational scheme capable of treating the response of the composition fields to arbitrary deformations of the vesicle and vice versa. The results indicate that curvature coupling, along with the field theory model for composition free energy, gives domain formations that are correlated with surface defects on the vesicle. In the case that external deformations are included, the domain structures are seen to respond to such deformations. The present simulation capability provides a significant step forward toward the simulation of realistic cellular membrane processes.


Assuntos
Lipossomos/química , Fenômenos Biomecânicos , Fenômenos Biofísicos , Biofísica , Elasticidade , Modelos Químicos , Termodinâmica
5.
Biophys J ; 87(5): 3242-63, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15347594

RESUMO

A method for simulating a two-component lipid bilayer membrane in the mesoscopic regime is presented. The membrane is modeled as an elastic network of bonded points; the spring constants of these bonds are parameterized by the microscopic bulk modulus estimated from earlier atomistic nonequilibrium molecular dynamics simulations for several bilayer mixtures of DMPC and cholesterol. The modulus depends on the composition of a point in the elastic membrane model. The dynamics of the composition field is governed by the Cahn-Hilliard equation where a free energy functional models the coupling between the composition and curvature fields. The strength of the bonds in the elastic network are then modulated noting local changes in the composition and using a fit to the nonequilibrium molecular dynamics simulation data. Estimates for the magnitude and sign of the coupling parameter in the free energy model are made treating the bending modulus as a function of composition. A procedure for assigning the remaining parameters in the free energy model is also outlined. It is found that the square of the mean curvature averaged over the entire simulation box is enhanced if the strength of the bonds in the elastic network are modulated in response to local changes in the composition field. We suggest that this simulation method could also be used to determine if phase coexistence affects the stress response of the membrane to uniform dilations in area. This response, measured in the mesoscopic regime, is already known to be conditioned or renormalized by thermal undulations.


Assuntos
Bicamadas Lipídicas/química , Fluidez de Membrana , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Substâncias Macromoleculares/química , Conformação Molecular , Movimento (Física) , Transição de Fase , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...