Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 18(1): e0279398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36701372

RESUMO

Worldwide, most beef breeding herds are naturally mated. As such, the ability to identify and select fertile bulls is critically important for both productivity and genetic improvement. Here, we collected ten fertility-related phenotypes for 6,063 bulls from six tropically adapted breeds. Phenotypes were comprised of four bull conformation traits and six traits directly related to the quality of the bull's semen. We also generated high-density DNA genotypes for all the animals. In total, 680,758 single nucleotide polymorphism (SNP) genotypes were analyzed. The genomic correlation of the same trait observed in different breeds was positive for scrotal circumference and sheath score on most breed comparisons, but close to zero for the percentage of normal sperm, suggesting a divergent genetic background for this trait. We confirmed the importance of a breed being present in the reference population to the generation of accurate genomic estimated breeding values (GEBV) in an across-breed validation scenario. Average GEBV accuracies varied from 0.19 to 0.44 when the breed was not included in the reference population. The range improved to 0.28 to 0.59 when the breed was in the reference population. Variants associated with the gene HDAC4, six genes from the spermatogenesis-associated (SPATA) family of proteins, and 29 transcription factors were identified as candidate genes. Collectively these results enable very early in-life selection for bull fertility traits, supporting genetic improvement strategies currently taking place within tropical beef production systems. This study also improves our understanding of the molecular basis of male fertility in mammals.


Assuntos
Genoma , Sêmen , Masculino , Bovinos/genética , Animais , Genoma/genética , Genômica/métodos , Genótipo , Fenótipo , Fertilidade/genética , Polimorfismo de Nucleotídeo Único , Mamíferos/genética
3.
G3 (Bethesda) ; 12(4)2022 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-35143647

RESUMO

Shrimp are a valuable aquaculture species globally; however, disease remains a major hindrance to shrimp aquaculture sustainability and growth. Mechanisms mediated by endogenous viral elements have been proposed as a means by which shrimp that encounter a new virus start to accommodate rather than succumb to infection over time. However, evidence on the nature of such endogenous viral elements and how they mediate viral accommodation is limited. More extensive genomic data on Penaeid shrimp from different geographical locations should assist in exposing the diversity of endogenous viral elements. In this context, reported here is a PacBio Sequel-based draft genome assembly of an Australian black tiger shrimp (Penaeus monodon) inbred for 1 generation. The 1.89 Gbp draft genome is comprised of 31,922 scaffolds (N50: 496,398 bp) covering 85.9% of the projected genome size. The genome repeat content (61.8% with 30% representing simple sequence repeats) is almost the highest identified for any species. The functional annotation identified 35,517 gene models, of which 25,809 were protein-coding and 17,158 were annotated using interproscan. Scaffold scanning for specific endogenous viral elements identified an element comprised of a 9,045-bp stretch of repeated, inverted, and jumbled genome fragments of infectious hypodermal and hematopoietic necrosis virus bounded by a repeated 591/590 bp host sequence. As only near complete linear ∼4 kb infectious hypodermal and hematopoietic necrosis virus genomes have been found integrated in the genome of P. monodon previously, its discovery has implications regarding the validity of PCR tests designed to specifically detect such linear endogenous viral element types. The existence of joined inverted infectious hypodermal and hematopoietic necrosis virus genome fragments also provides a means by which hairpin double-stranded RNA could be expressed and processed by the shrimp RNA interference machinery.


Assuntos
Densovirinae , Penaeidae , Animais , Austrália , Densovirinae/genética , Genoma Viral , Penaeidae/genética , Reação em Cadeia da Polimerase
4.
J Anim Sci ; 98(11)2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33057688

RESUMO

Genomic tools to better define breed composition in agriculturally important species have sparked scientific and commercial industry interest. Knowledge of breed composition can inform multiple scientifically important decisions of industry application including DNA marker-assisted selection, identification of signatures of selection, and inference of product provenance to improve supply chain integrity. Genomic tools are expensive but can be economized by deploying a relatively small number of highly informative single-nucleotide polymorphisms (SNP) scattered evenly across the genome. Using resources from the 1000 Bull Genomes Project we established calibration (more stringent quality criteria; N = 1,243 cattle) and validation (less stringent; N = 864) data sets representing 17 breeds derived from both taurine and indicine bovine subspecies. Fifteen successively smaller panels (from 500,000 to 50 SNP) were built from those SNP in the calibration data that increasingly satisfied 2 criteria, high differential allele frequencies across the breeds as measured by average Euclidean distance (AED) and high uniformity (even spacing) across the physical genome. Those SNP awarded the highest AED were in or near genes previously identified as important signatures of selection in cattle such as LCORL, NCAPG, KITLG, and PLAG1. For each panel, the genomic breed composition (GBC) of each animal in the validation dataset was estimated using a linear regression model. A systematic exploration of the predictive accuracy of the various sized panels was then undertaken on the validation population using 3 benchmarking approaches: (1) % error (expressed relative to the estimated GBC made from over 1 million SNP), (2) % breed misassignment (expressed relative to each individual's breed recorded), and (3) Shannon's entropy of estimated GBC across the 17 target breeds. Our analyses suggest that a panel of just 250 SNP represents an adequate balance between accuracy and cost-only modest gains in accuracy are made as one increases panel density beyond this point.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Animais , Bovinos/genética , Frequência do Gene , Genômica , Genótipo , Masculino
5.
Front Genet ; 11: 264, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32318091

RESUMO

The introduction of wild Atlantic salmon into captivity, and their subsequent artificial selection for production traits, has caused phenotypic differences between domesticated fish and their wild counterparts. Identification of regions of the genome underling these changes offers the promise of characterizing the early biological consequences of domestication. In the current study, we sequenced a population of farmed European Atlantic salmon and compared the observed patterns of SNP variation to those found in conspecific wild populations. This identified 139 genomic regions that contained significantly elevated SNP homozygosity in farmed fish when compared to their wild counterparts. The most extreme was adjacent to versican, a gene involved in control of neural crest cell migration. To control for false positive signals, a second and independent dataset of farmed and wild European Atlantic salmon was assessed using the same methodology. A total of 81 outlier regions detected in the first dataset showed significantly reduced homozygosity within the second one, strongly suggesting the genomic regions identified are enriched for true selection sweeps. Examination of the associated genes identified a number previously characterized as targets of selection in other domestic species and that have roles in development, behavior and olfactory system. These include arcvf, sema6, errb4, id2-like, and 6n1-like genes. Finally, we searched for evidence of parallel sweeps using a farmed population of North American origin. This failed to detect a convincing overlap to the putative sweeps present in European populations, suggesting the factors that drive patterns of variation under domestication and early artificial selection were largely independent. This is the first analysis on domestication of aquaculture species exploiting whole-genome sequence data and resulted in the identification of sweeps common to multiple independent populations of farmed European Atlantic salmon.

6.
BMC Genomics ; 21(1): 77, 2020 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-31992204

RESUMO

BACKGROUND: This study used a genome-wide screen of gene expression to better understand the metabolic and functional differences between commercially valuable intramuscular fat (IMF) and commercially wasteful subcutaneous (SC) fat depots in Bos taurus beef cattle. RESULTS: We confirmed many findings previously made at the biochemical level and made new discoveries. The fundamental lipogenic machinery, such as ACACA and FASN encoding the rate limiting Acetyl CoA carboxylase and Fatty Acid synthase were expressed at 1.6-1.8 fold lower levels in IMF, consistent with previous findings. The FA elongation pathway including the rate limiting ELOVL6 was also coordinately downregulated in IMF compared to SC as expected. A 2-fold lower expression in IMF of ACSS2 encoding Acetyl Coenzyme A synthetase is consistent with utilisation of less acetate for lipogenesis in IMF compared to SC as previously determined using radioisotope incorporation. Reduced saturation of fat in the SC depot is reflected by 2.4 fold higher expression of the SCD gene encoding the Δ9 desaturase enzyme. Surprisingly, CH25H encoding the cholesterol 25 hydroxylase enzyme was ~ 36 fold upregulated in IMF compared to SC. Moreover, its expression in whole muscle tissue appears representative of the proportional representation of bovine marbling adipocytes. This suite of observations prompted quantification of a set of oxysterols (oxidised forms of cholesterol) in the plasma of 8 cattle exhibiting varying IMF. Using Liquid Chromatography-Mass Spectrometry (LC-MS) we found the levels of several oxysterols were significantly associated with multiple marbling measurements across the musculature, but (with just one exception) no other carcass phenotypes. CONCLUSIONS: These data build on our molecular understanding of ruminant fat depot biology and suggest oxysterols represent a promising circulating biomarker for cattle marbling.


Assuntos
Adipócitos/metabolismo , Expressão Gênica , Metaboloma , Músculo Esquelético , Gordura Subcutânea/citologia , Transcriptoma , Adipogenia/genética , Animais , Bovinos , Análise por Conglomerados , Biologia Computacional/métodos , Metabolismo Energético , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos , Músculo Esquelético/citologia , Especificidade de Órgãos/genética
7.
G3 (Bethesda) ; 9(10): 3067-3078, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31413154

RESUMO

Wild abalone (Family Haliotidae) populations have been severely affected by commercial fishing, poaching, anthropogenic pollution, environment and climate changes. These issues have stimulated an increase in aquaculture production; however production growth has been slow due to a lack of genetic knowledge and resources. We have sequenced a draft genome for the commercially important temperate Australian 'greenlip' abalone (Haliotis laevigata, Donovan 1808) and generated 11 tissue transcriptomes from a female adult abalone. Phylogenetic analysis of the greenlip abalone with reference to the Pacific abalone (Haliotis discus hannai) indicates that these abalone species diverged approximately 71 million years ago. This study presents an in-depth analysis into the features of reproductive dysfunction, where we provide the putative biochemical messenger components (neuropeptides) that may regulate reproduction including gonad maturation and spawning. Indeed, we isolate the egg-laying hormone neuropeptide and under trial conditions induce spawning at 80% efficiency. Altogether, we provide a solid platform for further studies aimed at stimulating advances in abalone aquaculture production. The H. laevigata genome and resources are made available to the public on the abalone 'omics website, http://abalonedb.org.


Assuntos
Gastrópodes/genética , Genoma , Genômica , Proteoma , Proteômica , Sequência de Aminoácidos , Animais , Biologia Computacional/métodos , Genômica/métodos , Hormônios/metabolismo , Anotação de Sequência Molecular , Neuropeptídeos/metabolismo , Filogenia , Proteômica/métodos , Reprodução
8.
BMC Genomics ; 20(1): 139, 2019 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-30770720

RESUMO

BACKGROUND: A key developmental transformation in the life of all vertebrates is the transition to sexual maturity, whereby individuals are capable of reproducing for the first time. In the farming of Atlantic salmon, early maturation prior to harvest size has serious negative production impacts. RESULTS: We report genome wide association studies (GWAS) using fish measured for sexual maturation in freshwater or the marine environment. Genotypic data from a custom 50 K single nucleotide polymorphism (SNP) array was used to identify 13 significantly associated SNP for freshwater maturation with the most strongly associated on chromosomes 10 and 11. A higher number of associations (48) were detected for marine maturation, and the two peak loci were found to be the same for both traits. The number and broad distribution of GWAS hits confirmed a highly polygenetic nature, and GWAS performed separately within males and females revealed sex specific genetic behaviour for loci co-located with positional candidate genes phosphatidylinositol-binding clathrin assembly protein-like (picalm) and membrane-associated guanylate kinase, WW and PDZ domain-containing protein 2 (magi2). CONCLUSIONS: The results extend earlier work and have implications for future applied breeding strategies to delay maturation in this important aquaculture species.


Assuntos
Pesqueiros , Herança Multifatorial , Salmo salar/genética , Maturidade Sexual/genética , Maturidade Sexual/fisiologia , Animais , Sequência de Bases , Cruzamento , Bases de Dados Genéticas , Feminino , Água Doce , Expressão Gênica , Frequência do Gene , Variação Genética , Estudo de Associação Genômica Ampla , Genótipo , Guanilato Quinases/genética , Masculino , Proteínas Monoméricas de Montagem de Clatrina/genética , Polimorfismo de Nucleotídeo Único , Água do Mar , Fatores Sexuais , Tasmânia , Sequenciamento Completo do Genoma
9.
Sci Rep ; 8(1): 13553, 2018 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-30202061

RESUMO

The black tiger shrimp (Penaeus monodon) remains the second most widely cultured shrimp species globally; however, issues with disease and domestication have seen production levels stagnate over the past two decades. To help identify innovative solutions needed to resolve bottlenecks hampering the culture of this species, it is important to generate genetic and genomic resources. Towards this aim, we have produced the most complete publicly available P. monodon transcriptome database to date based on nine adult tissues and eight early life-history stages (BUSCO - Complete: 98.2% [Duplicated: 51.3%], Fragmented: 0.8%, Missing: 1.0%). The assembly resulted in 236,388 contigs, which were then further segregated into 99,203 adult tissue specific and 58,678 early life-history stage specific clusters. While annotation rates were low (approximately 30%), as is typical for a non-model organisms, annotated transcript clusters were successfully mapped to several hundred functional KEGG pathways. Transcripts were clustered into groups within tissues and early life-history stages, providing initial evidence for their roles in specific tissue functions, or developmental transitions. We expect the transcriptome to provide an essential resource to investigate the molecular basis of commercially relevant-significant traits in P. monodon and other shrimp species.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento , Genoma/genética , Penaeidae/genética , Transcriptoma/genética , Animais , Aquicultura , Perfilação da Expressão Gênica , Família Multigênica/genética , Locos de Características Quantitativas/genética , RNA Longo não Codificante/genética
10.
Sci Rep ; 8(1): 5664, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618750

RESUMO

Teleost fish exhibit a remarkable diversity in the control of sex determination, offering the opportunity to identify novel differentiation mechanisms and their ecological consequences. Here, we perform GWAS using 4715 fish and 46,501 SNP to map sex determination to three separate genomic locations in Atlantic salmon (Salmo salar). To characterize each, whole genome sequencing was performed to 30-fold depth of coverage using 20 fish representing each of three identified sex lineages. SNP polymorphism reveals male fish carry a single copy of the male specific region, consistent with an XX/XY or male heterogametric sex system. Haplotype analysis revealed deep divergence between the putatively ancestral locus on chromosome 2, compared with loci on chromosomes 3 and 6. Haplotypes in fish carrying either the chromosome 3 or 6 loci were nearly indistinguishable, indicating a founding event that occurred following the speciation event that defined Salmo salar from other salmonids. These findings highlight the evolutionarily fluid state of sex determination systems in salmonids, and resolve to the sequence level differences in animals with divergent sex lineages.


Assuntos
Cromossomos , Evolução Molecular , Loci Gênicos , Polimorfismo de Nucleotídeo Único , Salmo salar/genética , Processos de Determinação Sexual/genética , Animais , Feminino , Genoma , Genômica , Masculino , Sequenciamento Completo do Genoma
11.
Nat Commun ; 9(1): 859, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29491421

RESUMO

Domestication fundamentally reshaped animal morphology, physiology and behaviour, offering the opportunity to investigate the molecular processes driving evolutionary change. Here we assess sheep domestication and artificial selection by comparing genome sequence from 43 modern breeds (Ovis aries) and their Asian mouflon ancestor (O. orientalis) to identify selection sweeps. Next, we provide a comparative functional annotation of the sheep genome, validated using experimental ChIP-Seq of sheep tissue. Using these annotations, we evaluate the impact of selection and domestication on regulatory sequences and find that sweeps are significantly enriched for protein coding genes, proximal regulatory elements of genes and genome features associated with active transcription. Finally, we find individual sites displaying strong allele frequency divergence are enriched for the same regulatory features. Our data demonstrate that remodelling of gene expression is likely to have been one of the evolutionary forces that drove phenotypic diversification of this common livestock species.


Assuntos
Evolução Molecular , Genoma , Elementos Reguladores de Transcrição , Ovinos/genética , Animais , Cruzamento , Feminino , Frequência do Gene , Masculino , Anotação de Sequência Molecular , Filogenia , Ovinos/classificação
12.
Front Genet ; 9: 687, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30662453

RESUMO

Abalone breeding in southern Australia often involves the production of interspecies hybrids through crossing blacklip (Haliotos rubra) and greenlip (H. laevigata) parental populations. To assist applied breeding and investigate genetic divergence, this study applied genome sequencing and variant detection to develop and validate a SNP genotyping tool. Skim short read Illumina sequencing was performed using 24 individuals from each of the two parental species and a hybrid population. Raw reads were assembled into three population specific pools (each 12-15 fold coverage), before mapping was performed against a draft greenlip abalone reference genome. Variant detection identified 22.4 M raw variants across the three populations (SNP and indels), suggesting they are highly heterozygous. First stage filtering defined a high quality SNP collection of 2.2 M variants independently called in each of the three populations. Second stage filtering identified a much smaller set of variants for assay design and genotyping using a validation set of 191 abalone of known population and pedigree. Comparison of allele frequency data revealed a high proportion of SNP (43%) had divergent allele frequency (< 0.2) between the two parental populations, suggesting they should have utility for parentage assignment. A maximum likelihood approach was used to successfully assign 105 of 105 progeny to their known true parent amongst a set of 86 candidate parents, confirming the genotyping tool has utility for applied breeding. Analysis of pairwise allele sharing successfully discriminated animals into populations, and PCA of genetic distance grouped the hybrid animals with intermediate values between the two parental populations. The findings present a library of DNA polymorphism of utility to breeding and ecological application, and begins to characterize the divergence separating two economically important aquaculture species.

13.
Genet Sel Evol ; 47: 84, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26525050

RESUMO

BACKGROUND: The success of genomic selection in animal breeding hinges on the availability of a large reference population on which genomic-based predictions of additive genetic or breeding values are built. Here, we explore the benefit of combining two unrelated populations into a single reference population. METHODS: The datasets consisted of 1829 Brahman and 1973 Tropical Composite cattle with measurements on five phenotypes relevant to tropical adaptation and genotypes for 71,726 genome-wide single nucleotide polymorphisms (SNPs). The underlying genomic correlation for the same phenotype across the two breeds was explored on the basis of consistent linkage disequilibrium (LD) phase and marker effects in both breeds. RESULTS: The proportion of genetic variance explained by the entire set of SNPs ranged from 37.5 to 57.6 %. Estimated genomic correlations were drastically affected by the process used to select SNPs and went from near 0 to more than 0.80 for most traits when using the set of SNPs with significant effects and the same LD phase in the two breeds. We found that, by carefully selecting the subset of SNPs, the missing heritability can be largely recovered and accuracies in genomic predictions can be improved six-fold. However, the increases in accuracy might come at the expense of large biases. CONCLUSIONS: Our results offer hope for the effective implementation of genomic selection schemes in situations where the number of breeds is large, the sample size within any single breed is small and the breeding objective includes many phenotypes.


Assuntos
Cruzamentos Genéticos , Genoma , Genômica/métodos , Modelos Genéticos , Seleção Genética , Algoritmos , Animais , Bovinos , Conjuntos de Dados como Assunto , Evolução Molecular , Genética Populacional , Estudo de Associação Genômica Ampla , Genótipo , Desequilíbrio de Ligação , Linhagem , Fenótipo , Polimorfismo de Nucleotídeo Único , Característica Quantitativa Herdável , Reprodutibilidade dos Testes
14.
Mol Ecol ; 24(22): 5616-32, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26454263

RESUMO

The identification of genes influencing fitness is central to our understanding of the genetic basis of adaptation and how it shapes phenotypic variation in wild populations. Here, we used whole-genome resequencing of wild Rocky Mountain bighorn sheep (Ovis canadensis) to >50-fold coverage to identify 2.8 million single nucleotide polymorphisms (SNPs) and genomic regions bearing signatures of directional selection (i.e. selective sweeps). A comparison of SNP diversity between the X chromosome and the autosomes indicated that bighorn males had a dramatically reduced long-term effective population size compared to females. This probably reflects a long history of intense sexual selection mediated by male-male competition for mates. Selective sweep scans based on heterozygosity and nucleotide diversity revealed evidence for a selective sweep shared across multiple populations at RXFP2, a gene that strongly affects horn size in domestic ungulates. The massive horns carried by bighorn rams appear to have evolved in part via strong positive selection at RXFP2. We identified evidence for selection within individual populations at genes affecting early body growth and cellular response to hypoxia; however, these must be interpreted more cautiously as genetic drift is strong within local populations and may have caused false positives. These results represent a rare example of strong genomic signatures of selection identified at genes with known function in wild populations of a nonmodel species. Our results also showcase the value of reference genome assemblies from agricultural or model species for studies of the genomic basis of adaptation in closely related wild taxa.


Assuntos
Genética Populacional , Preferência de Acasalamento Animal , Seleção Genética , Carneiro da Montanha/genética , Adaptação Biológica/genética , Animais , Cromossomos , Feminino , Deriva Genética , Variação Genética , Genômica , Cornos , Masculino , Montana , Polimorfismo de Nucleotídeo Único , Densidade Demográfica , Receptores Acoplados a Proteínas G/genética , Análise de Sequência de DNA , Wyoming , Cromossomo X
15.
BMC Genomics ; 16: 384, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25975716

RESUMO

BACKGROUND: Previous genome-wide association analyses identified QTL regions in the X chromosome for percentage of normal sperm and scrotal circumference in Brahman and Tropical Composite cattle. These traits are important to be studied because they are indicators of male fertility and are correlated with female sexual precocity and reproductive longevity. The aim was to investigate candidate genes in these regions and to identify putative causative mutations that influence these traits. In addition, we tested the identified mutations for female fertility and growth traits. RESULTS: Using a combination of bioinformatics and molecular assay technology, twelve non-synonymous SNPs in eleven genes were genotyped in a cattle population. Three and nine SNPs explained more than 1% of the additive genetic variance for percentage of normal sperm and scrotal circumference, respectively. The SNPs that had a major influence in percentage of normal sperm were mapped to LOC100138021 and TAF7L genes; and in TEX11 and AR genes for scrotal circumference. One SNP in TEX11 was explained ~13% of the additive genetic variance for scrotal circumference at 12 months. The tested SNP were also associated with weight measurements, but not with female fertility traits. CONCLUSIONS: The strong association of SNPs located in X chromosome genes with male fertility traits validates the QTL. The implicated genes became good candidates to be used for genetic evaluation, without detrimentally influencing female fertility traits.


Assuntos
Bovinos/crescimento & desenvolvimento , Bovinos/genética , Mutação , Fenótipo , Carne Vermelha , Cromossomo X/genética , Andrologia , Animais , Bovinos/anatomia & histologia , Bovinos/fisiologia , Feminino , Fertilidade/genética , Técnicas de Genotipagem , Desequilíbrio de Ligação , Masculino , Polimorfismo de Nucleotídeo Único , Escroto/anatomia & histologia , Espermatozoides/citologia
16.
Mar Biotechnol (NY) ; 17(3): 252-65, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25634056

RESUMO

There is virtually no knowledge of the molecular events controlling early embryogenesis in Penaeid shrimp. A combination of controlled spawning environment, shrimp embryo micro-dissection techniques, and next-generation sequencing was used to produce transcriptome EST datasets of Penaeus japonicus animal and vegetal half-embryos. Embryos were collected immediately after spawning, and then blastomeres were separated at the two-cell stage and allowed to develop to late gastrulation, then pooled for RNA isolation and cDNA synthesis. Ion Torrent sequencing of cDNA from approximately 500 pooled animal and vegetal half-embryos from multiple spawnings resulted in 560,516 and 493,703 reads, respectively. Reads from each library were assembled and Gene Ontogeny analysis produced 3479 annotated animal contigs and 4173 annotated vegetal contigs, with 159/139 hits for developmental processes in the animal/vegetal contigs, respectively. Contigs were subject to BLAST for selected developmental toolbox genes. Some of the genes found included the sex determination genes sex-lethal and transformer; the germ line genes argonaute 1, boule, germ cell-less, gustavus, maelstrom, mex-3, par-1, pumilio, SmB, staufen, and tudor; the mesoderm genes brachyury, mef2, snail, and twist; the axis determination/segmentation genes ß-catenin, deformed, distal-less, engrailed, giant, hairy, hunchback, kruppel, orthodenticle, patched, tailless, and wingless/wnt-8c; and a number of cell-cycle regulators. Animal and vegetal contigs were computationally subtracted from each other to produce sets unique to either half-embryo library. Genes expressed only in the animal half included bmp1, kruppel, maelstrom, and orthodenticle. Genes expressed only in the vegetal half included boule, brachyury, deformed, dorsal, engrailed, hunchback, spalt, twist, and wingless/wnt-8c.


Assuntos
Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genes Controladores do Desenvolvimento , Penaeidae/metabolismo , Transcriptoma , Animais , Blastômeros/citologia , Blastômeros/metabolismo , Diferenciação Celular , Bases de Dados Genéticas , Embrião não Mamífero , Etiquetas de Sequências Expressas , Feminino , Gastrulação/genética , Ontologia Genética , Biblioteca Genômica , Células Germinativas/citologia , Células Germinativas/metabolismo , Masculino , Mesoderma/citologia , Mesoderma/embriologia , Mesoderma/metabolismo , Anotação de Sequência Molecular , Penaeidae/citologia , Penaeidae/embriologia , Análise de Sequência de DNA
17.
Mol Ecol Resour ; 15(4): 723-36, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25388640

RESUMO

Single nucleotide polymorphisms (SNPs) have become the marker of choice for genetic studies in organisms of conservation, commercial or biological interest. Most SNP discovery projects in nonmodel organisms apply a strategy for identifying putative SNPs based on filtering rules that account for random sequencing errors. Here, we analyse data used to develop 4723 novel SNPs for the commercially important deep-sea fish, orange roughy (Hoplostethus atlanticus), to assess the impact of not accounting for systematic sequencing errors when filtering identified polymorphisms when discovering SNPs. We used SAMtools to identify polymorphisms in a velvet assembly of genomic DNA sequence data from seven individuals. The resulting set of polymorphisms were filtered to minimize 'bycatch'-polymorphisms caused by sequencing or assembly error. An Illumina Infinium SNP chip was used to genotype a final set of 7714 polymorphisms across 1734 individuals. Five predictors were examined for their effect on the probability of obtaining an assayable SNP: depth of coverage, number of reads that support a variant, polymorphism type (e.g. A/C), strand-bias and Illumina SNP probe design score. Our results indicate that filtering out systematic sequencing errors could substantially improve the efficiency of SNP discovery. We show that BLASTX can be used as an efficient tool to identify single-copy genomic regions in the absence of a reference genome. The results have implications for research aiming to identify assayable SNPs and build SNP genotyping assays for nonmodel organisms.


Assuntos
Técnicas de Genotipagem/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Polimorfismo de Nucleotídeo Único , Vertebrados/classificação , Vertebrados/genética , Animais , Biologia Computacional/métodos
18.
Science ; 344(6188): 1168-1173, 2014 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24904168

RESUMO

Sheep (Ovis aries) are a major source of meat, milk, and fiber in the form of wool and represent a distinct class of animals that have a specialized digestive organ, the rumen, that carries out the initial digestion of plant material. We have developed and analyzed a high-quality reference sheep genome and transcriptomes from 40 different tissues. We identified highly expressed genes encoding keratin cross-linking proteins associated with rumen evolution. We also identified genes involved in lipid metabolism that had been amplified and/or had altered tissue expression patterns. This may be in response to changes in the barrier lipids of the skin, an interaction between lipid metabolism and wool synthesis, and an increased role of volatile fatty acids in ruminants compared with nonruminant animals.


Assuntos
Metabolismo dos Lipídeos/fisiologia , Rúmen/fisiologia , Carneiro Doméstico/genética , Carneiro Doméstico/metabolismo , Sequência de Aminoácidos , Animais , Ácidos Graxos Voláteis/metabolismo , Ácidos Graxos Voláteis/fisiologia , Regulação da Expressão Gênica , Genoma , Queratinas Específicas do Cabelo/genética , Metabolismo dos Lipídeos/genética , Dados de Sequência Molecular , Filogenia , Rúmen/metabolismo , Carneiro Doméstico/classificação , Transcriptoma , Lã/crescimento & desenvolvimento
19.
J Proteomics ; 108: 337-53, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-24929219

RESUMO

Aside from their critical role in reproduction, abalone gonads serve as an indicator of sexual maturity and energy balance, two key considerations for effective abalone culture. Temperate abalone farmers face issues with tank restocking with highly marketable abalone owing to inefficient spawning induction methods. The identification of key proteins in sexually mature abalone will serve as the foundation for a greater understanding of reproductive biology. Addressing this knowledge gap is the first step towards improving abalone aquaculture methods. Proteomic profiling of female and male gonads of greenlip abalone, Haliotis laevigata, was undertaken using liquid chromatography-mass spectrometry. Owing to the incomplete nature of abalone protein databases, in addition to searching against two publicly available databases, a custom database comprising genomic data was used. Overall, 162 and 110 proteins were identified in females and males respectively with 40 proteins common to both sexes. For proteins involved in sexual maturation, sperm and egg structure, motility, acrosomal reaction and fertilization, 23 were identified only in females, 18 only in males and 6 were common. Gene ontology analysis revealed clear differences between the female and male protein profiles reflecting a higher rate of protein synthesis in the ovary and higher metabolic activity in the testis. BIOLOGICAL SIGNIFICANCE: A comprehensive mass spectrometry-based analysis was performed to profile the abalone gonad proteome providing the foundation for future studies of reproduction in abalone. Key proteins involved in both reproduction and energy balance were identified. Genomic resources were utilised to build a database of molluscan proteins yielding >60% more protein identifications than in a standard workflow employing public protein databases.


Assuntos
Bases de Dados de Proteínas , Gastrópodes/metabolismo , Ovário/metabolismo , Proteômica , Testículo/metabolismo , Animais , Feminino , Gastrópodes/genética , Masculino , Reprodução/fisiologia
20.
Front Genet ; 5: 89, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24795751

RESUMO

We evaluated the relevance of the BovineHD Illumina SNP chip with respect to genes involved in epigenetic processes. Genotypes for 729,068 SNP on two tropical cattle breeds of Australia were used: Brahman (n = 2112) and Tropical Composite (n = 2550). We used data mining approaches to compile a list of bovine protein-coding genes involved in epigenetic processes. These genes represent 9 functional categories that contain between one (histone demethylases) and 99 (chromatin remodeling factors) genes. A total of 3091 SNP mapped to positions within 3000 bp of the 193 coding regions of those genes, including 113 SNP in transcribed regions, 2738 in intronic regions and 240 in up- or down-stream regions. For all these SNP categories, we observed differences in the allelic frequencies between Brahman and Tropical Composite cattle. These differences were larger than those observed for the entire set of 729,068 SNP (P = 1.79 x 10(-5)). A multidimensional scaling analysis using only the 113 SNP in transcribed regions allowed for the separation of the two populations and this separation was comparable to the one obtained with a random set of 113 SNP (Principal Component 1 r (2) > 0.84). To further characterize the differences between the breeds we defined a gene-differentiation metric based on the average genotypic frequencies of SNP connected to each gene and compared both cattle populations. The 10% most differentiated genes were distributed across 10 chromosomes, with significant (P < 0.05) enrichment on BTA 3 and 10. The 10% most conserved genes were located in 12 chromosomes. We conclude that there is variation between cattle populations in genes connected to epigenetic processes, and this variation can be used to differentiate cattle breeds. More research is needed to fully characterize the use of these SNP and its potential as means to further our understanding of biological variation and epigenetic processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...