Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Immunohematology ; 31(2): 75-80, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26495893

RESUMO

Matrix-assisted laser desorption/ionization, time-of-flight mass spectrometry (MALDI-TOF MS), is a sensitive analytical method capable of resolving DNA fragments varying in mass by a single nucleotide. MALDI-TOF MS is applicable to blood group genotyping, as the majority of blood group antigens are encoded by single nucleotide polymorphisms. Blood group genotyping by MALDI-TOF MS can be performed using a panel (Hemo ID Blood Group Genotyping Panel, Agena Bioscience Inc., San Diego, CA) that is a set of genotyping assays that predict the phenotype for 101 antigens from 16 blood group systems. These assays involve three fundamental stages: multiplex target-specific polymerase chain reaction amplification, allele-specific single base primer extension, and MALDI-TOFMS analysis using the MassARRAY system. MALDI-TOF MS-based genotyping has many advantages over alternative methods including high throughput, high multiplex capability, flexibility and adaptability, and the high level of accuracy based on the direct detection method. Currently available platforms for MALDI-TOF MS-based genotyping are not without limitations, including high upfront instrumentation costs and the number of non-automated steps. The Hemo ID Blood Group Genotyping Panel, developed and optimized in a collaboration between the vendor and the Blood Transfusion Service of the Swiss Red Cross in Zurich, Switzerland, is not yet widely utilized, although several laboratories are currently evaluating the MassARRAY system for blood group genotyping. Based on the accuracy and other advantages offered by MALDITOF MS analysis, in the future, this method is likely to become widely adopted for blood group genotyping, in particular, for population screening.


Assuntos
Antígenos de Grupos Sanguíneos/genética , Técnicas de Genotipagem/métodos , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Alelos , Tipagem e Reações Cruzadas Sanguíneas , DNA/genética , Genótipo , Humanos , Reação em Cadeia da Polimerase , Reprodutibilidade dos Testes
3.
Transfusion ; 55(6 Pt 2): 1451-6, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25523184

RESUMO

BACKGROUND: Until recently, SARAH (SARA) was a low-frequency antigen within the 700 series (700.052). SARA was discovered in Australia and subsequently described in Canada where anti-SARA was implicated in severe hemolytic disease of the fetus and newborn (HDFN). This study investigated whether SARA could be recategorized into an existing, or novel, blood group system. STUDY DESIGN AND METHODS: Serologically typed Australian SARA family members (n = 9) were exome sequenced followed by bioinformatics analysis. Sanger sequencing of Exon 3 of GYPA of Australian (n = 9) and Canadian (n = 9) family members was then performed, as were peptide inhibition studies. RESULTS: Exome sequencing identified 499,329 single-nucleotide variants (SNVs) within the nine individuals. Filtering excluded SNVs with an NCBI dbSNP ID (n = 482,177) and non-protein coding SNVs (n = 14,008); for the remaining 3144 SNVs, only one, c.240G>T of GYPA encoding p.Arg80Ser, was present in all six SARA-positive individuals. Sanger sequencing confirmed the presence of c.240G>T in the Australian SARA-positive individuals and demonstrated the same genetic basis in the Canadian SARA family. For a peptide representing the SARA sequence, inhibition of anti-SARA against SARA-positive cells was 84.6% at a concentration of 1.0 mg/mL. CONCLUSION: We provide evidence that the SARA antigen is encoded by a SNV on GYPA and SARA has been reassigned to the MNS blood group system, now MNS47. This discovery provides a basis for application of genetic approaches in SARA typing when clinically indicated, for example, in HDFN.


Assuntos
Variação Genética , Isoantígenos/genética , Sistema do Grupo Sanguíneo MNSs/genética , Austrália , Canadá , Eritroblastose Fetal/genética , Família , Feminino , Frequência do Gene , Humanos , Recém-Nascido , Masculino , Linhagem , Polimorfismo de Nucleotídeo Único , Gravidez , Análise de Sequência de DNA
4.
Blood Transfus ; 13(1): 78-85, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24960658

RESUMO

BACKGROUND: The Indian blood group antigens, In(a) and In(b), are clinically significant in transfusion medicine. However, antisera to type these antigens are difficult to obtain. The In(b) antigen is a high frequency antigen present in all populations, while the frequency of the antithetical In(a) ranges from 0.1% in Caucasians up to 11% in Middle Eastern groups. This antigen polymorphism is encoded by the single nucleotide polymorphism (SNP) 252G>C in CD44. The aim of this study was to establish and compare two genotyping methods to measure the frequency of the IN*A and IN*B alleles in a blood donor cohort. MATERIALS AND METHODS: Donor blood samples (n=151) were genotyped by a novel real-time polymerase chain reaction (PCR) high-resolution meltcurve (HRM) analysis and a custom matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF MS) assay. Samples with the rare IN*A allele were further investigated by nucleotide sequencing, red cell agglutination, and flow cytometry techniques. RESULTS: In this study group, 149 IN*B homozygous and 2 IN*A/B heterozygous samples were detected with 100% concordance between HRM and MALDI-TOF MS methods. For PCR HRM, amplicon melting alone did not differentiate IN*A and IN*B alleles (class 3 SNP), however, the introduction of an unlabelled probe (UP) increased the resolution of the assay. Sequencing confirmed that the two non-homozygous samples were IN*A/B heterozygous and phenotyping by red cell agglutination, and flow cytometry confirmed both In(a) and In(b) antigens were present as predicted. DISCUSSION: Genotyping permits conservation of rare antisera to predict blood group antigen phenotype. In PCR UP-HRM the IN*A and IN*B alleles were discriminated on the basis of their melting properties. The In(a) frequency in this selected donor population was 1.3%. Application of genotyping methods such as these assists in identifying donors with rare blood group phenotypes of potential clinical significance.


Assuntos
Alelos , Doadores de Sangue , Frequência do Gene , Receptores de Hialuronatos/genética , Polimorfismo de Nucleotídeo Único , Austrália , Estudos de Coortes , Feminino , Técnicas de Genotipagem , Humanos , Masculino
5.
Comput Struct Biotechnol J ; 11(19): 147-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25408849

RESUMO

The number of blood group systems, currently 35, has increased in the recent years as genetic variations defining red cell antigens continue to be discovered. At present, 44 genes and 1568 alleles have been defined as encoding antigens within the 35 blood group systems. This paper provides a brief overview of two genetic technologies: single nucleotide variant (SNV) mapping by DNA microarray and massively parallel sequencing, with respect to blood group genotyping. The most frequent genetic change associated with blood group antigens are SNVs. To predict blood group antigen phenotypes, SNV mapping which involves highly multiplexed genotyping, can be performed on commercial microarray platforms. Microarrays detect only known SNVs, therefore, to type rare or novel alleles not represented in the array, further Sanger sequencing of the region is often required to resolve genotype. An example discussed in this article is the identification of rare and novel RHD alleles in the Australian population. Massively parallel sequencing, also known as next generation sequencing, has a high-throughput capacity and maps all points of variation from a reference sequence, allowing for identification of novel SNVs. Examples of the application of this technology to resolve the genetic basis of orphan blood group antigens are presented here. Overall, the determination of a full profile of blood group SNVs, in addition to serological phenotyping, provides a basis for provision of compatible blood thus offering improved transfusion safety.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...