Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 378(2169): 20190185, 2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32114910

RESUMO

Gallium nitride-based light-emitting diodes (LEDs) have revolutionized the lighting industry with their efficient generation of blue and green light. While broad-area (square millimetre) devices have become the dominant LED lighting technology, fabricating LEDs into micro-scale pixels (micro-LEDs) yields further advantages for optical wireless communications (OWC), and for the development of smart-lighting applications such as tracking and imaging. The smaller active areas of micro-LEDs result in high current density operation, providing high modulation bandwidths and increased optical power density. Fabricating micro-LEDs in array formats allows device layouts to be tailored for target applications and provides additional degrees of freedom for OWC systems. Temporal and spatial control is crucial to use the full potential of these micro-scale sources, and is achieved by bonding arrays to pitch-matched complementary metal-oxide-semiconductor control electronics. These compact, integrated chips operate as digital-to-light converters, providing optical signals from digital inputs. Applying the devices as projection systems allows structured light patterns to be used for tracking and self-location, while simultaneously providing space-division multiple access communication links. The high-speed nature of micro-LED array devices, combined with spatial and temporal control, allows many modes of operation for OWC providing complex functionality with chip-scale devices. This article is part of the theme issue 'Optical wireless communication'.

2.
Opt Express ; 27(20): A1517-A1528, 2019 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-31684503

RESUMO

Integrated multi-color micron-sized light emitting diode (micro-LED) arrays have been demonstrated in recent years for display applications; however, their potential as visible light communication (VLC) transmitters is yet to be fully explored. In this work, we report on the fabrication and characterization of on-chip dual-color micro-LED arrays and their application in VLC. For this purpose, blue-green and blue-violet micro-LED arrays were fabricated by transfer printing blue-emitting micro-LEDs onto the substrate of green and violet micro-LEDs, respectively. The potential of these dual-color micro-LED arrays as VLC transmitters is demonstrated with respective error-free data rates of 1.79 and 3.35 Gbps, achieved by the blue-green and blue-violet devices in a dual wavelength multiplexing scheme.

3.
Opt Express ; 26(24): 31474-31483, 2018 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-30650732

RESUMO

Visible light communications (VLC) is an emerging technology that uses LEDs, such as found in lighting fixtures and displays, to transmit data wirelessly. Research has so far focused on LED transmitters and on photoreceivers as separate, discrete components. Combining both types of devices into a single transceiver format will enable bi-directional VLC and offer flexibility for the development of future advanced VLC systems. Here, a proof of concept for an integrated optical transceiver is demonstrated by transfer printing a microsize LED, the transmitter, directly onto a fluorescent optical concentrator edge-coupled to a photodiode, the receiver. This integrated device can simultaneously receive (downlink) and transmit (uplink) data at rates of 416 Mbps and 165 Mbps, respectively. Its capability to operate in optical relay mode at 337 Mbps is experimentally demonstrated.

4.
Opt Express ; 23(7): 9329-38, 2015 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-25968763

RESUMO

We report the transfer printing of blue-emitting micron-scale light-emitting diodes (micro-LEDs) onto fused silica and diamond substrates without the use of intermediary adhesion layers. A consistent Van der Waals bond was achieved via liquid capillary action, despite curvature of the LED membranes following release from their native silicon growth substrates. The excellence of diamond as a heat-spreader allowed the printed membrane LEDs to achieve optical power output density of 10 W/cm(2) when operated at a current density of 254 A/cm(2). This high-current-density operation enabled optical data transmission from the LEDs at 400 Mbit/s.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...