Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21258047

RESUMO

The global spread of SARS-CoV-2 has continued to be a serious concern after WHO declared the virus the causative agent of the coronavirus disease 2019 (COVID-19) a global pandemic. Monitoring of wastewater is a useful tool for assessing community prevalence given that fecal shedding of SARS-CoV-2 occurs in high concentrations by infected individuals, regardless of whether they are asymptomatic or symptomatic. Using tools that are part of the wastewater-based epidemiology (WBE) approach, combined with molecular analyses, wastewater monitoring becomes a key piece of information used to assess trends and quantify the scale and dynamics of COVID-19 infection in a specific community, municipality, or area of service. This study investigates a six-month long SARS-CoV-2 RNA quantification in influent wastewater from four municipal wastewater treatment plants (WWTP) serving the Charlotte region of North Carolina (NC) using both RT-qPCR and RT-ddPCR platforms. Influent wastewater was analyzed for the nucleocapsid (N) genes N1 and N2. Both RT-qPCR and RT-ddPCR performed well for detection and quantification of SARS-CoV-2 using the N1 target, while for the N2 target RT-ddPCR was more sensitive. SARS-CoV-2 concentration ranged from 103 to105 copies/L for all four plants. Both RT-qPCR and RT-ddPCR showed a significant moderate to a strong positive correlation between SARS-CoV-2 concentrations and the 7-day rolling average of clinically reported COVID-19 cases using a lag that ranged from 7 to 12 days. A major finding of this study is that despite small differences, both RT-qPCR and RT-ddPCR performed well for tracking the SARS-CoV-2 virus across WWTP of a range of sizes and metropolitan service functions.

2.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21257950

RESUMO

Wastewater based epidemiology (WBE) has drawn significant attention as an early warning tool to detect and predict the trajectory of COVID-19 cases in a community, in conjunction with public health data. This means of monitoring for outbreaks has been used at municipal wastewater treatment centers to analyze COVID-19 trends in entire communities, as well as by universities and other community living environments to monitor COVID-19 spread in buildings. Sample concentration is crucial, especially when viral abundance in raw wastewater is below the threshold of detection by RT-qPCR analysis. We evaluated the performance of a rapid ultrafiltration-based virus concentration method using InnovaPrep Concentrating Pipette (CP) Select and compared this to the established electronegative membrane filtration (EMF) method. We evaluated sensitivity of SARS-CoV-2 quantification, surrogate virus recovery rate, and sample processing time. Results suggest that the CP Select concentrator is more efficient at concentrating SARS-CoV-2 from wastewater compared to the EMF method. About 25% of samples that tested negative when concentrated with the EMF method produced a positive signal with the CP Select protocol. Increased recovery of the surrogate virus control using the CP Select confirms this observation. We optimized the CP Select protocol by adding AVL lysis buffer and sonication, to increase the recovery of virus. Sonication increased Bovine Coronavirus (BCoV) recovery by 19%, which seems to compensate for viral loss during centrifugation. Filtration time decreases by approximately 30% when using the CP Select protocol, making this an optimal choice for building surveillance applications where quick turnaround time is necessary.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-20248843

RESUMO

The COVID-19 pandemic has been a source of ongoing challenges and presents an increased risk of illness in group environments, including jails, long term care facilities, schools, and, of course, residential college campuses. Early reports that the SARS-CoV-2 virus was detectable in wastewater in advance of confirmed cases sparked widespread interest in wastewater based epidemiology (WBE) as a tool for mitigation of COVID-19 outbreaks. One hypothesis was that wastewater surveillance might provide a cost-effective alternative to other more expensive approaches such as pooled and random testing of groups. In this paper, we report the outcomes of a wastewater surveillance pilot program at the University of North Carolina at Charlotte, a large urban university with a substantial population of students living in on-campus dormitories. Surveillance was conducted at the building level on a thrice-weekly schedule throughout the universitys fall residential semester. In multiple cases, wastewater surveillance enabled identification of asymptomatic COVID-19 cases that were not detected by other components of the campus monitoring program, which also included in-house contact tracing, symptomatic testing, scheduled testing of student athletes, and daily symptom reporting. In the context of all cluster events reported to the University community during the fall semester, wastewater-based testing events resulted in identification of smaller clusters than were reported in other types of cluster events. Wastewater surveillance was able to detect single asymptomatic individuals in dorms with total resident populations of 150-200. While the strategy described was developed for COVID-19, it is likely to be applicable to mitigation of future pandemics in universities and other group-living environments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...