Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(29): 35046-35053, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34236166

RESUMO

Giant piezoresistive effect enables the development of ultrasensitive sensing devices to address the increasing demands from hi-tech applications such as space exploration and self-driving cars. The discovery of the giant piezoresistive effect by optoelectronic coupling leads to a new strategy for enhancing the sensitivity of mechanical sensors, particularly with light from light-emitting diodes (LEDs). This paper reports on the piezoresistive effect in a 3C-SiC/Si heterostructure with a bonded LED that can reach a gauge factor (GF) as high as 18 000. This value represents an approximately 1000 times improvement compared to the configuration without a bonded LED. This GF is one of the highest GFs reported to date for the piezoresistive effect in semiconductors. The generation of carrier concentration gradient in the top thin 3C-SiC film under illumination from the LED coupling with the tuning current contributes to the modulation of the piezoresistive effect in a 3C-SiC/Si heterojunction. In addition, the feasibility of using different types of LEDs as the tools for modulating the piezoresistive effect is investigated by evaluating lateral photovoltage and photocurrent under LED's illumination. The generated lateral photovoltage and photocurrent are as high as 14 mV and 47.2 µA, respectively. Recent technologies for direct bonding of micro-LEDs on a Si-based device and the discovery reported here may have a significant impact on mechanical sensors.

2.
RSC Adv ; 8(28): 15310-15314, 2018 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-35539501

RESUMO

This paper presents a simple, rapid and cost-effective wire bonding technique for single crystalline silicon carbide (3C-SiC) MEMS devices. Utilizing direct ultrasonic wedge-wedge bonding, we have demonstrated for the first time the direct bonding of aluminum wires onto SiC films for the characterization of electronic devices without the requirement for any metal deposition and etching process. The bonded joints between the Al wires and the SiC surfaces showed a relatively strong adhesion force up to approximately 12.6-14.5 mN and excellent ohmic contact. The bonded wire can withstand high temperatures above 420 K, while maintaining a notable ohmic contact. As a proof of concept, a 3C-SiC strain sensor was demonstrated, where the sensing element was developed based on the piezoresistive effect in SiC and the electrical contact was formed by the proposed direct-bonding technique. The SiC strain sensor possesses high sensitivity to the applied mechanical strains, as well as exceptional repeatability. The work reported here indicates the potential of an extremely simple direct wire bonding method for SiC for MEMS and microelectronic applications.

3.
RSC Adv ; 8(6): 3009-3013, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35541213

RESUMO

This paper presents for the first time a p-type 4H silicon carbide (4H-SiC) van der Pauw strain sensor by utilizing the strain induced effect in four-terminal devices. The sensor was fabricated from a 4H-SiC (0001) wafer, using a 1 µm thick p-type epilayer with a concentration of 1018 cm-3. Taking advantage of the four-terminal configuration, the sensor can eliminate the need for resistance-to-voltage conversion which is typically required for two-terminal devices. The van der Pauw sensor also exhibits an excellent repeatability and linearity with a significantly large output voltage in induced strain ranging from 0 to 334 ppm. Various sensors aligned in different orientations were measured and a high sensitivity of 26.3 ppm-1 was obtained. Combining these performances with the excellent mechanical strength, electrical conductivity, thermal stability, and chemical inertness of 4H-SiC, the proposed sensor is promising for strain monitoring in harsh environments.

4.
ACS Appl Mater Interfaces ; 9(46): 39921-39925, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29098850

RESUMO

This letter reports a giant opto-piezoresistive effect in p-3C-SiC/p-Si heterostructure under visible-light illumination. The p-3C-SiC/p-Si heterostructure has been fabricated by growing a 390 nm p-type 3C-SiC on a p-type Si substrate using the low pressure chemical vapor deposition (LPCVD) technique. The gauge factor of the heterostructure was found to be 28 under a dark condition; however, it significantly increased to about -455 under illumination of 635 nm wavelength at 3.0 mW/cm2. This gauge factor is over 200 times higher than that of commercial metal strain gauge, 16 times higher than that of 3C-SiC thinfilm, and approximately 5 times larger than that of bulk Si. This enhancement of the gauge factor was attributed to the opto-mechanical coupling effect in p-3C-SiC/p-Si heterostructure. The opto-mechanical coupling effect is the amplified effect of the photoconductivity enhancement and strain-induced band structure modification in the p-type Si substrate. These findings enable extremely high sensitive and robust mechanical sensors, as well as optical sensors at low cost, as no complicated nanofabrication process is required.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...