Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Micromachines (Basel) ; 15(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38793155

RESUMO

In this work, an additive manufacturing process for extruding fully compounded thermosetting elastomers based on fluorine-containing polymer compositions is reported. Additive manufacturing printers are designed with a dry ice container to precool filaments made from curable fluoroelastomer (FKM) and perfluoroelastomer (FFKM) compounds. A support tube guides the stiffened filament towards the printer nozzle. This support tube extends near the inlet to a printer nozzle. This approach allows low-modulus, uncured rubber filaments to be printed without buckling, a phenomenon common when 3D printing low-modulus elastomers via the fused deposition modeling (FDM) process. Modeling studies using thermal analyses data from a Dynamic Mechanical Analyzer (DMA) and a Differential Scanning Calorimeter (DSC) are used to calculate the Young's modulus and buckling force, which helps us to select the appropriate applied pressure and the nozzle size for printing. Using this additive manufacturing (AM) method, the successful printing of FKM and FFKM compounds is demonstrated. This process can be used for the future manufacturing of seals or other parts from fluorine-containing polymers.

2.
Micromachines (Basel) ; 15(5)2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38793195

RESUMO

This work investigated material extrusion additive manufacturing (MatEx AM) of specialized fluoroelastomer (FKM) compounds for applications in rubber seals and gaskets. The influence of a commercially available perfluoropolyether (PFPE) plasticizer on the printability of a control FKM rubber compound was studied using a custom-designed ram material extruder, Additive Ram Material Extruder (ARME), for printing fully compounded thermoset elastomers. The plasticizer's effectiveness was assessed based on its ability to address challenges such as high compound viscosity and post-print shrinkage, as well as its impact on interlayer adhesion. The addition of the PFPE plasticizer significantly reduced the FKM compound's viscosity (by 70%) and post-print shrinkage (by 65%). While the addition of the plasticizer decreased the tensile strength of the control compound, specimens printed with the plasticized FKM retained 34% of the tensile strength of compression-molded samples, compared to only 23% for the unplasticized compound. Finally, the feasibility of seals and gaskets manufacturing using both conventional and unconventional additive manufacturing (AM) approaches was explored. A hybrid method combining AM and soft tooling for compression molding emerged as the optimal method for seal and gasket fabrication.

3.
Polymers (Basel) ; 16(7)2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38611143

RESUMO

In this study, particle loading, polyfluorinated alkyl silanes (PFAS or FAS) content, superhydrophobicity, and crack formation for nanocomposite coatings created by the spray coating process were investigated. The formulations comprised hydrophobic silica, epoxy resin, and fluorine-free or FAS constituents. The effect of FAS content and FAS-free compositions on the silica and epoxy coatings' chemistry, topography, and wetting properties was also studied. All higher particle loadings (~30 wt.%) showed superhydrophobicity, while lower particle loading formulations did not show superhydrophobic behavior until 13% wt. FAS content. The improved water repellency of coatings with increased FAS (low particle loadings) was attributed to a combination of chemistry and topography as described by the Cassie state. X-ray photoelectron spectroscopy (XPS) spectra showed fluorine enrichment on the coating surface, which increases the intrinsic contact angle. However, increasing the wt.% of FAS in the final coating resulted in severe crack formation for higher particle loadings (~30 wt.%). The results show that fluorine-free and crack-free coatings exhibiting superhydrophobicity can be created.

4.
Polymers (Basel) ; 15(5)2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36904483

RESUMO

Superhydrophilic coatings based on a hydrophilic silica nanoparticle suspension and Poly (acrylic acid) (PAA) were prepared by dip coating. Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) were used to examine the morphology of the coating. The effect of surface morphology on the dynamic wetting behavior of the superhydrophilic coatings was studied by changing the silica suspension concentration from 0.5% wt. to 3.2% wt. while keeping the silica concentration in the dry coating constant. The droplet base diameter and dynamic contact angle with respect to time were measured using a high-speed camera. A power law was found to describe the relationship between the droplet diameter and time. A significantly low experimental power law index was obtained for all the coatings. Both roughness and volume loss during spreading were suggested to be responsible for the low index values. The water adsorption of the coatings was found to be the reason for the volume loss during spreading. The coatings exhibited good adherence to the substrates and retention of hydrophilic properties under mild abrasion.

5.
ACS Omega ; 7(45): 40766-40774, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36406545

RESUMO

We report an innovative approach to creating stretchable conductive materials composed of a tubular shell made from braided carbon nanotube yarns (CNTYs) embedded in an elastomeric matrix. For stretchable electronics, both mechanical properties and electrical conductivities are of interest. Consequently, both the mechanical behavior and electrical conductivities under large deformations were investigated. A new hyperelastic composite model was developed to predict the large deformation response to applied stress for a braid in a tubular elastomer composite. The composite demonstrated a hyperelastic response due to the architecture of the braid, and the behavior was affected by the braiding angle, braid modulus, and volume fraction of fibers. The elastomer matrix was considered a neo-Hookean material and represented by the Yeoh model. An interaction parameter was proposed to account for the effect of the elastomer/braid cooperative restriction as observed in experimental and calculated results. This novel approach enabled the determination of the constitutive behavior of the composite in large deformations (>150%), taking into account the elastomer and yarn properties and braid configurations. The model exhibited good agreement with the experimental results. As the CNTYs are conductive, a stretchable conductive composite was obtained having a resistivity of 5.01 × 10-4 and 5.67 × 10-5 Ω·cm for the 1-ply and 4-ply composites, respectively. The resistivity remained constant through cyclic loading under large deformations in tension until mechanical failure. The material has potential for use in stretchable electronics applications.

6.
Polymers (Basel) ; 14(21)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36365655

RESUMO

The effect of particle loading on the wetting properties of coatings was investigated by modifying a coating formulation based on hydrophilic silica nanoparticles and poly (acrylic acid) (PAA). Water contact angle (WCA) measurements were conducted for all coatings to characterize the surface wetting properties. Wettability was improved with an increase in particle loading. The resulting coatings showed superhydrophilic (SH) behavior when the particle loading was above 53 vol. %. No new peaks were detected by attenuated total reflection (ATR-FTIR). The surface topography of the coatings was studied by atomic force microscopy (AFM) and scanning electron microscopy (SEM). The presence of hydrophilic functional groups and nano-scale roughness were found to be responsible for superhydrophilic behavior. The surface chemistry was found to be a primary factor determining the wetting properties of the coatings. Adhesion of the coatings to the substrate was tested by tape test and found to be durable. The antifogging properties of the coatings were evaluated by exposing the films under different environmental conditions. The SH coatings showed anti-fogging behavior. The transparency of the coatings was significantly improved with the increase in particle loading. The coatings showed good transparency (>85% transmission) when the particle loading was above 84 vol. %.

7.
ACS Appl Mater Interfaces ; 13(48): 58096-58103, 2021 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-34813281

RESUMO

Protein fouling on critical biointerfaces causes significant public health and clinical ramifications. Multiple strategies, including superhydrophobic (SHP) surfaces and coatings, have been explored to mitigate protein adsorption on solid surfaces. SHP materials with underwater air plastron (AP) layers hold great promise by physically reducing the contact area between a substrate and protein molecules. However, sustaining AP stability or lifetime is crucial in determining the durability and long-term applications of SHP materials. This work investigated the effect of protein on the AP stability using model SHP substrates, which were prepared from a mixture of silica nanoparticles and epoxy. The AP stability was determined using a submersion test with real-time visualization. The results showed that AP stability was significantly weakened by protein solutions compared to water, which could be attributed to the surface tension of protein solutions and protein adsorption on SHP substrates. The results were further examined to reveal the correlation between protein fouling and accelerated AP dissipation on SHP materials by confocal fluorescent imaging, surface energy measurement, and surface robustness modeling of the Cassie-Baxter to Wenzel transition. The study reveals fundamental protein adsorption mechanisms on SHP materials, which could guide future SHP material design to better mitigate protein fouling on critical biointerfaces.


Assuntos
Materiais Biomiméticos/química , Proteínas/química , Adsorção , Ar , Compostos de Epóxi/química , Interações Hidrofóbicas e Hidrofílicas , Teste de Materiais , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício/química , Propriedades de Superfície
8.
Langmuir ; 37(22): 6650-6659, 2021 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-34038126

RESUMO

The performance of hydrophobic surfaces under hydraulic pressures is critical to a wide range of practical applications such as drag reduction of seaboard vessels and design of microfluidic devices. This research focuses on the evaluation of drag reduction and velocity slip of hydrophobic surfaces and coatings under external hydrostatic pressures using an acoustic wave device (i.e., quartz crystal microbalance, QCM). The correlation between the resonant frequency shift of a QCM device and drag reduction of hydrophobic surface coated on the QCM was theoretically developed and the model was validated by comparing the measurement results of the drag reduction of an epoxy-based superhydrophobic coating with those measured by a rheometer. The QCM device was further employed to study the wetting state transition and drag reduction of water on a micropillar array based superhydrophobic surface under elevated hydrostatic pressures. It was found that the transition from Cassie to Wenzel states occurred at a critical hydrostatic pressure which was indicated by a sudden frequency drop of the QCM device. In addition, the effective heights of the meniscus at the liquid/air interface increased with the external pressure before the transition took place. The drag reduction induced by the micropillar surface decreased with the increasing hydrostatic pressures. It was demonstrated that the developed QCM based technology provides a low cost, simple, and reliable tool for evaluating hydrophobic performance of various surfaces under external hydrostatic pressures.

9.
Molecules ; 25(20)2020 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-33092170

RESUMO

Carbon nanotube yarns (CNTYs) possess low density, high conductivity, high strength, and moderate flexibility. These intrinsic properties allow them to be a preferred choice for use as conductive elements in high-performance composites. To fully exploit their potential as conductive reinforcing elements, further improvement in their electrical conductivity is needed. This study demonstrates that tensile cyclic loading under ambient conditions improves the electrical conductivity of two types of CNTYs. The results showed that the electrical resistance of untreated CNTYs was reduced by 80% using cyclic loading, reaching the resistance value of the drawn acid-treated CNTYs. Scanning electron microscopy showed that cyclic loading caused orientation and compaction of the CNT bundles that make up the CNTYs, resulting in significantly improved electrical conductivity of the CNTYs. Furthermore, the elastic modulus was increased by 20% while preserving the tensile strength. This approach has the potential to replace the environmentally unfriendly acid treatment currently used to enhance the conductivity of CNTYs.


Assuntos
Condutividade Elétrica , Nanotecnologia , Nanotubos de Carbono/química , Módulo de Elasticidade/efeitos dos fármacos , Teste de Materiais , Microscopia Eletrônica de Varredura , Resistência à Tração
10.
ACS Omega ; 4(7): 12480-12488, 2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31460367

RESUMO

Roll-to-roll hot embossing could revolutionize the manufacturing of multifunctional polymer films with the ability to process large area at a high rate with reduced cost. The continuous hot embossing of the films, however, has been hindered due to the lack of durable and flexible molds, which can replicate micro and nanofeatures with reliability over several embossing cycles. In this work, we demonstrate for the first time the fabrication of a flexible polymer (polyimide) mold from the commercially available sheet by a maskless photolithography approach combined with inductively coupled plasma etching and its potential application to the roll-to-roll hot embossing process. The flexible polyimide mold consisted of holes with controlled dimensions: diameter: 14 µm, spacing: 16.5 µm, and depth: 6.8 µm. The reliability of flexible polyimide mold was tested and implemented by embossing micron-sized features on a commercial thermoplastic polymer, polyamide, and thermoplastic elastomer (TPE) sheet. The polyimide mold replicated micron-sized features on polymer substrates (polyamide and TPE) with excellent fidelity and was durable even after numerous embossing cycles.

11.
Polymers (Basel) ; 11(2)2019 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-30960331

RESUMO

Currently, material extrusion 3D printing (ME3DP) based on fused deposition modeling (FDM) is considered a highly adaptable and efficient additive manufacturing technique to develop components with complex geometries using computer-aided design. While the 3D printing process for a number of thermoplastic materials using FDM technology has been well demonstrated, there still exists a significant challenge to develop new polymeric materials compatible with ME3DP. The present work reports the development of ME3DP compatible thermoplastic elastomeric (TPE) materials from polypropylene (PP) and styrene-(ethylene-butylene)-styrene (SEBS) block copolymers using a straightforward blending approach, which enables the creation of tailorable materials. Properties of the 3D printed TPEs were compared with traditional injection molded samples. The tensile strength and Young's modulus of the 3D printed sample were lower than the injection molded samples. However, no significant differences could be found in the melt rheological properties at higher frequency ranges or in the dynamic mechanical behavior. The phase morphologies of the 3D printed and injection molded TPEs were correlated with their respective properties. Reinforcing carbon black was used to increase the mechanical performance of the 3D printed TPE, and the balancing of thermoplastic elastomeric and mechanical properties were achieved at a lower carbon black loading. The preferential location of carbon black in the blend phases was theoretically predicted from wetting parameters. This study was made in order to get an insight to the relationship between morphology and properties of the ME3DP compatible PP/SEBS blends.

12.
Nanotechnol Sci Appl ; 10: 53-68, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28243071

RESUMO

Durable superhydrophobic coatings were synthesized using a system of silica nanoparticles (NPs) to provide nanoscale roughness, fluorosilane to give hydrophobic chemistry, and three different polymer binders: urethane acrylate, ethyl 2-cyanoacrylate, and epoxy. Coatings composed of different binders incorporating NPs in various concentrations exhibited different superhydrophobic attributes when applied on polycarbonate (PC) and glass substrates and as a function of coating composition. It was found that the substrate surface characteristics and wettability affected the superhydrophobic characteristics of the coatings. Interfacial tension and spreading coefficient parameters (thermodynamics) of the coating components were used to predict the localization of the NPs for the different binders' concentrations. The thermodynamic analysis of the NPs localization was in good agreement with the experimental observations. On the basis of the thermodynamic analysis and the experimental scanning electron microscopy, X-ray photoelectron spectroscopy, profilometry, and atomic force microscopy results, it was concluded that localization of the NPs on the surface was critical to provide the necessary roughness and resulting superhydrophobicity. The durability evaluated by tape testing of the epoxy formulations was the best on both glass and PC. Several coating compositions retained their superhydrophobicity after the tape test. In summary, it was concluded that thermodynamic analysis is a powerful tool to predict the roughness of the coating due to the location of NPs on the surface, and hence can be used in the design of superhydrophobic coatings.

13.
J Expo Sci Environ Epidemiol ; 27(4): 379-390, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-27189256

RESUMO

In this study, the characteristics of airborne particles generated during injection molding and grinding processes of carbon nanotube reinforced polycarbonate composites (CNT-PC) were investigated. Particle number concentration, size distribution, and morphology of particles emitted from the processes were determined using real-time particle sizers and transmission electron microscopy. The air samples near the operator's breathing zone were collected on filters and analyzed using scanning electron microscope for particle morphology and respirable fiber count. Processing and grinding during recycling of CNT-PC released airborne nanoparticles (NPs) with a geometric mean (GM) particle concentration from 4.7 × 103 to 1.7 × 106 particles/cm3. The ratios of the GM particle concentration measured during the injection molding process with exhaust ventilation relative to background were up to 1.3 (loading), 1.9 (melting), and 1.4 (molding), and 101.4 for grinding process without exhaust ventilation, suggesting substantial NP exposures during these processes. The estimated mass concentration was in the range of 1.6-95.2 µg/m3. Diverse particle morphologies, including NPs, NP agglomerates, particles with embedded or protruding CNTs and fibers, were observed. No free CNTs were found during any of the investigated processes. The breathing zone respirable fiber concentration during the grinding process ranged from non-detectable to 0.13 fiber/cm3. No evidence was found that the emissions were affected by the number of recycling cycles. Institution of exposure controls is recommended during these processes to limit exposures to airborne NPs and CNT-containing fibers.


Assuntos
Poluentes Ocupacionais do Ar/análise , Nanofibras/análise , Nanopartículas/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Poeira/análise , Monitoramento Ambiental/métodos , Humanos , Exposição por Inalação/análise , Microscopia Eletrônica de Transmissão , Nanopartículas/química , Nanotubos de Carbono/química , Tamanho da Partícula , Cimento de Policarboxilato , Reciclagem , Análise de Regressão
14.
Ann Occup Hyg ; 60(1): 40-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26447230

RESUMO

Carbon nanotube (CNT) polymer composites are widely used as raw materials in multiple industries because of their excellent properties. This expansion, however, is accompanied by realistic concerns over potential release of CNTs and associated nanoparticles during the manufacturing, recycling, use, and disposal of CNT composite products. Such data continue to be limited, especially with regards to post-processing of CNT-enabled products, recycling and handling of nanowaste, and end-of-life disposal. This study investigated for the first time airborne nanoparticle and fibers exposures during injection molding and recycling of CNT polypropylene composites (CNT-PP) relative to that of PP. Exposure characterization focused on source emissions during loading, melting, molding, grinding, and recycling of scrap material over 20 cycles and included real-time characterization of total particle number concentration and size distribution, nanoparticle and fiber morphology, and fiber concentrations near the operator. Total airborne nanoparticle concentration emitted during loading, melting, molding, and grinding of CNT-PP had geometric mean ranging from 1.2 × 10(3) to 4.3 × 10(5) particles cm(-3), with the highest exposures being up to 2.9 and 300.7 times above the background for injection molding and grinding, respectively. Most of these emissions were similar to PP synthesis. Melting and molding of CNT-PP and PP produced exclusively nanoparticles. Grinding of CNT-PP but not PP generated larger particles with encapsulated CNTs, particles with CNT extrusions, and respirable fiber (up to 0.2 fibers cm(-3)). No free CNTs were found in any of the processes. The number of recycling runs had no significant impact on exposures. Further research into the chemical composition of the emitted nanoparticles is warranted. In the meanwhile, exposure controls should be instituted during processing and recycling of CNT-PP.


Assuntos
Nanofibras/análise , Nanotubos de Carbono/análise , Exposição Ocupacional/análise , Polipropilenos/química , Reciclagem/métodos , Poluentes Ocupacionais do Ar/análise , Monitoramento Ambiental/métodos , Humanos , Indústrias/normas , Exposição por Inalação/análise , Nanopartículas , Exposição Ocupacional/normas , Tamanho da Partícula
15.
Langmuir ; 29(31): 9702-11, 2013 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-23848316

RESUMO

Electrophoretic deposition from viscous media has the potential to produce in-mold assembly of nanoparticles onto three-dimensional parts in high-rate, polymer melt-based processes like injection molding. The effects of the media's molecular weight on deposition behavior were investigated using a model system of carbon black and polystyrene in tetrahydrofuran. Increases in molecular weight reduced the electrophoretic deposition of the carbon black particles due to increases in suspension viscosity and preferential adsorption of the longer polystyrene chains on the carbon black particles. At low deposition times (≤5 s), only carbon black deposited onto the electrodes, but the deposition decreased with increasing molecular weight and the resultant increases in suspension viscosity. For longer deposition times, polystyrene codeposited with the carbon black, with the amount of polystyrene increasing with molecular weight and decreasing with greater charge on the polystyrene molecules. This deposition behavior suggests that use of lower molecular polymers and control of electrical properties will permit electrophoretic deposition of nanoparticles from polymer melts for high-rate, one-step fabrication of nano-optical devices, biochemical sensors, and nanoelectronics.


Assuntos
Carbono/química , Técnicas Eletroquímicas , Furanos/química , Nanopartículas/química , Poliestirenos/química , Peso Molecular , Tamanho da Partícula , Propriedades de Superfície
16.
Nanotechnology ; 23(33): 335303, 2012 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-22863729

RESUMO

Assembling conducting polyaniline (PANi) on pre-patterned nano-structures by a high rate, commercially viable route offers an opportunity for manufacturing devices with nanoscale features. In this work we report for the first time the use of pulsed electric field to assist electrophoresis for the assembly of conducting polyaniline on gold nanowire interdigitated templates. This technique offers dynamic control over heat build-up, which has been a main drawback in the DC electrophoresis and AC dielectrophoresis as well as the main cause of nanowire template damage. The use of this technique allowed higher voltages to be applied, resulting in shorter assembly times (e.g., 17.4 s, assembly resolution of 100 nm). Moreover, the area coverage increases with the increase in number of pulses. A similar trend was observed with the deposition height and the increase in deposition height followed a linear trend with a correlation coefficient of 0.95. When the experimental mass deposited was compared with Hamaker's theoretical model, the two were found to be very close. The pre-patterned templates with PANi deposition were subsequently used to transfer the nanoscale assembled PANi from the rigid templates to thermoplastic polyurethane using the thermoforming process.

17.
Langmuir ; 28(27): 10238-45, 2012 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-22651098

RESUMO

Patterned polymer structures with different functionalities have many potential applications. Directed assembly of polymer blends using chemically functionalized patterns during spin-coating has been used to fabricate the patterned polymer structures. For bridging the gap between laboratorial experiments and manufacturing of nanodevices, the polymer blends structures are required to be precisely patterned into nonuniform geometries in a high-rate process, which still is a challenge. In this Article, we demonstrated for the first time that by decreasing the interfacial tension between two polymers polystyrene and poly(acrylic acid) via adding a compatibilizer (polystyrene-b-poly(acrylic acid) ), a polystyrene/poly(acrylic acid) blend was precisely patterned into nonuniform geometries in a high-rate fashion. The patterned nonuniform geometries included angled lines with angles varied from 30° to 150°, T-junctions, square arrays, circle arrays, and arbitrary letter-shaped geometries. The reduction in the interfacial tension improved the line edge roughness and the patterning efficiency of the patterned polymer blends. In addition, the commensurability between characteristic length and pattern periodicity for well-ordered morphologies was also expanded with decreasing interfacial tension. This approach can be easily extended to other functional polymers in a blend and facilitate the applications of patterned polymer structures in biosensors, organic thin-film electronics, and polymer solar cells.

18.
Langmuir ; 27(6): 3166-73, 2011 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-21280596

RESUMO

Polymer-melt-based manufacturing processes for nanostructures offer high-rate, environmentally friendly, and commercially viable alternatives to solution-based methods. In this work, electrophoresis of a model carbon black and polystyrene system with moderate viscosity was used to investigate the viability of adapting nanoassembly processes to the high viscosity environment of polymer melts. The presence of polystyrene did not prevent deposition of carbon black, but deposition rates decreased at shorter deposition times; deposition was not linear with increasing applied voltage; and greater solution concentrations reduced the critical voltages (i.e., the voltage at which the rate of deposition changed). X-ray photoelectron spectroscopy (XPS) results and comparison of experimental data with Hamaker's model showed that about 1.6% of the available polystyrene was initially deposited with the carbon black. At voltages above the critical voltage, the deposited mass was less than the Hamaker prediction, indicating the formation of electrically insulating layers on the electrodes. The overall behavior suggests that polymer melt-based processes could be employed for high-rate fabrication of nano-optical devices, biochemical sensors, and nanoelectronics.


Assuntos
Carbono/química , Nanopartículas/química , Eletroforese , Poliestirenos/química , Viscosidade
20.
Anal Bioanal Chem ; 393(5): 1531-8, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19104778

RESUMO

A unique interaction has been found between protein G' (a truncated recombinant bacterial "alphabet" protein which aligns by noncovalent attachment to the antibody stem) and poly(methyl methacrylate), a thermoplastic polymer substrate, which can be easily fabricated using high-rate processes. Significantly improved orientation efficiency with traditional passive adsorption for this system (termed ALYGNSA) has been achieved as compared to the same assay performed on a polystyrene substrate with protein G'. Results were consistent with an average alignment of 80% of the human immunoglobulin G capture antibody which translated into a 30% to 50% improved alignment over an array of industry standards tested. Laser scanning confocal microscopy confirmed the immunological results. Studies of additional poly(methyl methacrylate) polymer derivatives and protein biolinker (A and AG) combinations have been conducted and have revealed different degrees of antibody alignment. These findings may lead to additional novel noncovalent methods of antibody orientation and greater sensitivity in immunological assays.


Assuntos
Imunoglobulina G/química , Imunoglobulina G/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Polimetil Metacrilato/metabolismo , Fluorescência , Humanos , Imunoglobulina G/imunologia , Lasers , Polimetil Metacrilato/química , Proteínas Quinases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...