Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Int J MS Care ; 26: 167-173, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38966398

RESUMO

BACKGROUND: Black people with multiple sclerosis (MS) have a worse disease course and higher rates of progression than White people with MS. Contributing factors to health disparities are understudied. METHODS: Data were collected retrospectively from the electronic medical records of 500 people with MS treated between 2013 and 2022 at a university comprehensive MS center in a southern state. Multiple logistic regression analyses were used to determine the associations between 2 disability outcomes (ie, low vs high Expanded Disability Status Score [EDSS] and ambulatory assistance [AMB] requirements) and age, sex, body mass index (BMI), MS type, disease duration, hypertension status, diabetes status, smoking status, adjusted gross income, and health insurance type for Black people with MS and White people with MS. RESULTS: Of the cohort, 39.2% identified as Black people with MS and the rest were White people with MS. Approximately 80% of White people with MS had relapsing MS (RMS) vs almost 90% of Black people with MS. Black people with MS were more likely to have a higher EDSS (OR 5.0, CI 3.0-8.4) and AMB (OR, 2.8; 95% CI, 1.6-4.8) than White people with MS. Among White people with MS, women (OR, 0.5; 95% CI, 0.3-0.9) and people with RMS (OR, 0.13; 95% CI 0.06-0.3) were less likely to have higher EDSS scores. Among Black people with MS, neither female sex nor RMS status was associated with a lower risk of having a higher EDSS (OR, 0.685; P = .43 and OR, 0.394; P = .29, respectively). CONCLUSIONS: The disparity in disability outcomes between Black people with MS and White people with MS may be driven by more disabling courses for Black people with RMS and by female sex, though further study is needed to determine causes for this outcome.

2.
Pharmacoecon Open ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38982030

RESUMO

OBJECTIVE: The engagement of patients and family caregivers in value assessment is pivotal since they provide valuable contributions to assessment acceptability and relevance. The proposed study aims to use patient-centered techniques and multicriteria decision analysis (MCDA) to evaluate the values of disease-modifying therapies (DMTs) for multiple sclerosis (MS) from the perspectives of patients and family caregivers living in three 'Deep South' States of the US-Alabama, Louisiana, and Mississippi. METHODS: This study will follow guidance from the Patient-Centered Outcomes Research Institute (PCORI) for patient engagement and two best practice reports for MCDA from the Professional Society for Health Economics and Outcomes Research (ISPOR) to complete value assessment. Throughout the study, we will engage multiple stakeholders, including patients, family caregivers, healthcare providers, and payers. Forty patients with MS and their family caregivers from Alabama, Louisiana, and Mississippi will be invited to participate in this study. We will intensively train them for value assessment knowledge and MCDA before we engage them in MCDA to determine the value of DMTs for MS. DISCUSSIONS: Our approach differs from common MCDA since we incorporated a patient-centered framework in this study. Unlike previous studies only briefly inform or prepare participants before the MCDA process, in this study, we will provide basic value assessment trainings for patients and family caregivers to ensure they can effectively engage throughout the patient-centered MCDA process. We expect this study will demonstrate that the patient-centered MCDA approach is feasible and likely leads to improved patients' and family caregivers' engagement in value assessment.

3.
Nat Chem ; 16(6): 970-978, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38528102

RESUMO

In vivo fluorescence imaging in the shortwave infrared (SWIR, 1,000-1,700 nm) and extended SWIR (ESWIR, 1,700-2,700 nm) regions has tremendous potential for diagnostic imaging. Although image contrast has been shown to improve as longer wavelengths are accessed, the design and synthesis of organic fluorophores that emit in these regions is challenging. Here we synthesize a series of silicon-RosIndolizine (SiRos) fluorophores that exhibit peak emission wavelengths from 1,300-1,700 nm and emission onsets of 1,800-2,200 nm. We characterize the fluorophores photophysically (both steady-state and time-resolved), electrochemically and computationally using time-dependent density functional theory. Using two of the fluorophores (SiRos1300 and SiRos1550), we formulate nanoemulsions and use them for general systemic circulatory SWIR fluorescence imaging of the cardiovascular system in mice. These studies resulted in high-resolution SWIR images with well-defined vasculature visible throughout the entire circulatory system. This SiRos scaffold establishes design principles for generating long-wavelength emitting SWIR and ESWIR fluorophores.


Assuntos
Corantes Fluorescentes , Raios Infravermelhos , Imagem Óptica , Silício , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Silício/química , Animais , Camundongos , Indolizinas/química , Indolizinas/síntese química , Teoria da Densidade Funcional
4.
Ann Clin Transl Neurol ; 11(4): 1011-1020, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38374778

RESUMO

BACKGROUND AND OBJECTIVES: We aim to characterize the sociodemographic and clinical factors associated with loss of jobs, income, and work hours in people with neuromyelitis optica spectrum disorder (NMOSD) in the United States. METHODS: A REDCap-based survey was administered to working-age NMOSD patients (18-70 years old) querying demographic information, symptoms, immunosuppression, work hours, income, and caregiver work (11/2022-07/2023). Regression models were developed using MATLAB. RESULTS: Of 127 participants (97 female; 55% AQP4-antibody, 19% MOG antibody; 69% Caucasian, 7% Hispanic), with an average diagnosis age of 38.7 years, average disease duration of 6.4 years, mean 3.1 attacks, and 94% of whom were treated with immune system-directed therapy (53% rituximab, 8% satralizumab, 7% eculizumab, 6% mycophenolate mofetil, 4% inebilizumab, 2% azathioprine, 10% IVIg, 10% other), 56% lost a job due to NMOSD. Employment decreased 12% (80% pre- to 68% post-diagnosis). Thirty-six percent of participants said they no longer worked outside the home. Significant predictors for post-NMOSD diagnosis employment status included younger age, lower pain level, no walking aids, and having a job prediagnosis. Sixty-eight percent of those employed prediagnosis reduced their work hours, dropping an average of 18.4 h per month since being diagnosed (±10.1 h). Average annual income grew slowly at $1998 during the average 6.4 years of disease duration (14% of the value predicted by the U.S. Bureau of Labor Statistics). Sixty percent of participants had a regular unpaid caregiver; 34% of caregivers changed their work hours or job to help manage NMOSD. DISCUSSION: We provide a structured analysis of the impact of NMOSD on employment, work hours, and income in the United States, demonstrating its major effect on the livelihoods of patients and their caregivers.


Assuntos
Neuromielite Óptica , Humanos , Feminino , Estados Unidos , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Neuromielite Óptica/tratamento farmacológico , Rituximab , Ácido Micofenólico , Imunoglobulinas Intravenosas/uso terapêutico
5.
J Org Chem ; 89(5): 2825-2839, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38334085

RESUMO

Fluorescence-based biological imaging in the shortwave infrared (SWIR, 1000-1700 nm) is an attractive replacement for modern in vivo imaging techniques currently employed in both medical and research settings. Xanthene-based fluorophores containing heterocycle donors have recently emerged as a way to access deep SWIR emitting fluorophores. A concern for xanthene-based SWIR fluorophores though is chemical stability toward ambient nucleophiles due to the high electrophilicity of the cationic fluorophore core. Herein, a series of SWIR emitting silicon-rosindolizine (SiRos) fluorophores with emission maxima >1300 nm (up to 1550 nm) are synthesized. The SiRos fluorophore photophysical properties and chemical stability toward nucleophiles are examined through systematic derivatization of the silicon-core alkyl groups, indolizine donor substitution, and the use of o-tolyl or o-xylyl groups appended to the fluorophore core. The dyes are studied via absorption spectroscopy, steady-state emission spectroscopy, solution-based cyclic voltammetry, time-dependent density functional theory (TD-DFT) computational analysis, X-ray diffraction crystallography, and relative chemical stability over time. Optimal chemical stability is observed via the incorporation of the 2-ethylhexyl silicon substituent and the o-xylyl group to protect the core of the fluorophore.

6.
Acta Biomater ; 175: 106-113, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38042263

RESUMO

Skin aging is of immense societal and, thus, scientific interest. Because mechanics play a critical role in skin's function, a plethora of studies have investigated age-induced changes in skin mechanics. Nonetheless, much remains to be learned about the mechanics of aging skin. This is especially true when considering sex as a biological variable. In our work, we set out to answer some of these questions using mice as a model system. Specifically, we combined mechanical testing, histology, collagen assays, and two-photon microscopy to identify age- and sex-dependent changes in skin mechanics and to relate them to structural, microstructural, and compositional factors. Our work revealed that skin stiffness, thickness, and collagen content all decreased with age and were sex dependent. Interestingly, sex differences in stiffness were age induced. We hope our findings not only further our fundamental understanding of skin aging but also highlight both age and sex as important variables when conducting studies on skin mechanics. STATEMENT OF SIGNIFICANCE: Our work addresses the question, "How do sex and age affect the mechanics of skin?" Answering this question is of both scientific and societal importance. We do so in mice as a model system. Thereby, we hope to add clarity to a body of literature that appears divided on the effect of both factors. Our findings have important implications for those studying age and sex differences, especially in mice as a model system.


Assuntos
Envelhecimento da Pele , Feminino , Camundongos , Masculino , Animais , Colágeno/química , Pele , Testes Mecânicos
7.
RSC Adv ; 13(39): 27549-27557, 2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37720829

RESUMO

Bloodstain detection can provide crucial information and evidence at a crime scene; however, the ability to selectively detect bloodstains in a non-destructive manner with high sensitivity and low background is limited. This study reports a fluorescent dye (sulfonate indolizine squaraine, SO3SQ) for bloodstain visualization under near-infrared (NIR) irradiation. While the dye itself is minimally fluorescent in aqueous solution, it exhibits a "turn-on" mechanism upon binding with human serum albumin (HSA) as the fluorescence intensity increases over 160 times with strong absorption and emission at 693 nm and 758 nm, respectively. Bloodstains can be visualized on a surface even after being diluted 1000 times, and washed latent bloodstains can be detected with high sensitivity. Further, the turn-on fluorescent emission lasts for a minimum of seven days, allowing adequate time for detection. This study also indicates that the SO3SQ can sensitively detect bloodstain after the bloodstain aged for one week. Furthermore, the detection of latent blood fingerprint patterns from colorful backgrounds is demonstrated using this non-destructive method. The selective turn-on fluorescent dye with NIR excitation and emission is highly suitable in forensic science for bloodstain visualization.

8.
ACS Omega ; 8(32): 29234-29246, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37599963

RESUMO

Dye-sensitized solar cells (DSCs) can provide a clean energy solution to growing energy demands. In order to have devices of high performance, sensitizers that are able to absorb in the near-infrared region (NIR) are needed. Stronger electron donors are needed for intramolecular charge-transfer sensitizers to access longer wavelength photons. Thus, two novel organic dyes with a cross-conjugated dibenzosilin double donor design are studied herein. The double donor delocalizes multiple filled orbitals across both amine donors due to the fused design that planarizes the donor as observed computationally, which improves intramolecular charge-transfer strength. The dyes are studied via density functional theory (DFT), optical spectroscopy, electrochemistry, and in DSC devices. The studies indicate that the dye design can reduce recombination losses, allowing for improved DSC device performances relative to a single arylamine donor. The reduction in recombination losses is attributed to the six alkyl chains that are incorporated into the donor, which offer good surface protection.

9.
Langmuir ; 39(31): 10806-10819, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-37501336

RESUMO

Due to its abundance in blood, a great deal of research has been undertaken to develop efficient biosensors for serum albumin and provide insight into the interactions that take place between these biosensing molecules and the protein. Near-infrared (NIR, >700 nm) organic dyes have been shown to be effective biosensors of serum albumin, but their effectiveness is diminished in whole blood. Herein, it is shown that an NIR sulfonate indolizine-donor-based squaraine dye, SO3SQ, can be strengthened as a biosensor of albumin through the addition of biocompatible ionic liquids (ILs). Specifically, the IL choline glycolate (1:1), at a concentration of 160 mM, results in the enhanced fluorescence emission ("switch-on") of the dye in the presence of blood. The origin of the fluorescence enhancement was investigated via methods, including DLS, ITC, and molecular dynamics. Further, fluorescence measurements were conducted to see the impact the dye-IL system had on the fluorescence of the tryptophan residue of human serum albumin (HSA), as well as to determine its apparent association constants in relation to albumin. Circular dichroism (CD) spectroscopy was used to provide evidence that the dye-IL system does not alter the secondary structures of albumin or DNA. Our results suggest that the enhanced fluorescence of the dye in the presence of IL and blood is due to diversification of binding sites in albumin, controlled by the interaction of the IL-dye-albumin complex.


Assuntos
Líquidos Iônicos , Humanos , Líquidos Iônicos/química , Albumina Sérica/química , Albumina Sérica Humana/química , Sítios de Ligação , Triptofano/química , Espectrometria de Fluorescência/métodos , Dicroísmo Circular
10.
bioRxiv ; 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-36945509

RESUMO

Skin aging is of immense societal and, thus, scientific interest. Because mechanics play a critical role in skin's function, a plethora of studies have investigated age-induced changes in skin mechanics. Nonetheless, much remains to be learned about the mechanics of aging skin. This is especially true when considering sex as a biological variable. In our work, we set out to answer some of these questions using mice as a model system. Specifically, we combined mechanical testing, histology, collagen assays, and two-photon microscopy to identify age- and sex-dependent changes in skin mechanics and to relate them to structural, microstructural, and compositional factors. Our work revealed that skin stiffness, thickness, and collagen content all decreased with age and were sex dependent. Interestingly, sex differences in stiffness were age induced. We hope our findings not only further our fundamental understanding of skin aging but also highlight both age and sex as important variables when conducting studies on skin mechanics.

11.
J Photochem Photobiol B ; 240: 112652, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682344

RESUMO

The majority of nosocomial infections are caused by bacteria with antimicrobial resistance and the formation of biofilms, such as implant-related bacterial infections and sepsis. There is an urgent need to develop new strategies for early-stage screening, destruction of multidrug-resistant bacteria, and efficient inhibition of biofilms. Organic dyes that absorb and emit in the near-infrared (NIR) region are potentially non-invasive, high-resolution, and rapid biological imaging materials. In this study, a non-toxic and biocompatible indolizine squaraine dye with water-solubilizing sulfonate groups (SO3SQ) is studied for bacterial imaging and photothermal therapy (PTT). PTT is efficient in eliminating microorganisms through local hyperthermia without the risk of developing drug-resistant bacteria. The optical properties of SO3SQ are studied extensively in phosphate-buffered saline (PBS). UV-Vis-NIR absorption spectra analysis shows a strong absorption between 650 nm - 1000 nm. SO3SQ allows for the wash-free fluorescence imaging of drug-resistant bacteria via NIR fluorescence imaging due to a "turn-on" fluorescence property of the dye when interacting with bacteria. Although SO3SQ exhibits no toxicity against both Gram-positive bacteria and Gram-negative bacteria, the PTT property of SO3SQ is efficient in killing bacteria as well as inhibiting and eradicating biofilms. PTT experiments demonstrate that SO3SQ reduces 90% of cell viability in bacterial strains under NIR radiation with a minimum inhibition concentration (MIC90) of >450 µg/mL. The PTT property of SO3SQ can also inhibit biofilms (BIC90 = 1000-2000 µg/mL) and eradicate both preformed young and mature biofilms (MBEC90 = 1500-2000 µg/mL) as observed by crystal violet assays.


Assuntos
Indolizinas , Fototerapia , Fototerapia/métodos , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias , Imagem Óptica , Biofilmes , Indolizinas/farmacologia
12.
J Am Chem Soc ; 145(2): 1367-1377, 2023 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-36595559

RESUMO

Strong-field hexadentate ligands were synthesized and coordinated to cobalt metal centers to result in three new low-spin to low-spin Co(III/II) redox couples. The ligand backbone has been modified with dimethyl amine groups to result in redox potential tuning of the Co(III/II) redox couples from -200 to -430 mV versus Fc+/0. The redox couples surprisingly undergo a reversible molecular switch rearrangement from five-coordinate Co(II) to six-coordinate Co(III) despite the ligands being hexadentate. The complexes exhibit modestly faster electron self-exchange rate constants of 2.2-4.2 M-1 s-1 compared to the high-spin to low-spin redox couple [Co(bpy)3]3+/2+ at 0.27 M-1 s-1, which is attributed to the change in spin state being somewhat offset by this coordination switching behavior. The complexes were utilized as redox shuttles in dye-sensitized solar cells with the near-IR AP25 + D35 dye system and exhibited improved photocurrents over the [Co(bpy)3]3+/2+ redox shuttle (19.8 vs 18.0 mA/cm2). Future directions point toward pairing the low-spin to low-spin Co(II/III) tunable series to dyes with significantly more negative highest occupied molecular orbital potentials that absorb into the near-IR where outer sphere redox shuttles have failed to produce efficient dye regeneration.


Assuntos
Cobalto , Luz Solar , Ligantes , Oxirredução , Corantes
14.
Acta Biomater ; 140: 421-433, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856415

RESUMO

Understanding the response of skin to superphysiological temperatures is critical to the diagnosis and prognosis of thermal injuries, and to the development of temperature-based medical therapeutics. Unfortunately, this understanding has been hindered by our incomplete knowledge about the nonlinear coupling between skin temperature and its mechanics. In Part I of this study we experimentally demonstrated a complex interdependence of time, temperature, direction, and load in skin's response to superphysiological temperatures. In Part II of our study, we test two different models of skin's thermo-mechanics to explain our observations. In both models we assume that skin's response to superphysiological temperatures is governed by the denaturation of its highly collageneous microstructure. Thus, we capture skin's native mechanics via a microstructurally-motivated strain energy function which includes probability distributions for collagen fiber orientation and waviness. In the first model, we capture skin's response to superphysiological temperatures as a transition between two states that link the kinetics of collagen fiber denaturation to fiber coiling and to the transformation of each fiber's constitutive behavior from purely elastic to viscoelastic. In the second model, we capture skin's response to superphysiological temperatures instead via three states in which a sequence of two reactions link the kinetics of collagen fiber denaturation to fiber coiling, followed by a state of fiber damage. Given the success of both models in qualitatively and quantitatively capturing our observations, we expect that our work will provide guidance for future experiments that could probe each model's assumptions toward a better understanding of skin's coupled thermo-mechanics and that our work will be used to guide the engineering design of heat treatment therapies. STATEMENT OF SIGNIFICANCE: Quantifying and modeling skin thermo-mechanics is critical to our understanding of skin physiology, pathophysiology, as well as heat-based treatments. This work addresses a lack of theoretical and computational models of the coupled thermo-mechanics of skin. Our model accounts for skin microstructure through modeling the probability of fiber orientation and fiber stress-free states. Denaturing induces changes in the stress-free configuration of collagen, as well as changes in fiber stiffness and viscoelastic properties. We propose two competing models that fit all of our experimental observations. These models will enable future developments of thermal-therapeutics, prevention and management of skin thermal injuries, and set a foundation for improved mechanistic models of skin thermo-mechanics.


Assuntos
Fenômenos Fisiológicos da Pele , Pele , Fenômenos Biomecânicos , Colágeno/química , Modelos Biológicos , Estresse Mecânico
15.
Eng Comput ; 38(5): 3835-3848, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37139164

RESUMO

Nearly 1.6 million Americans suffer from a leaking tricuspid heart valve. To make matters worse, current valve repair options are far from optimal leading to recurrence of leakage in up to 30% of patients. We submit that a critical step toward improving outcomes is to better understand the "forgotten" valve. High-fidelity computer models may help in this endeavour. However, the existing models are limited by averaged or idealized geometries, material properties, and boundary conditions. In our current work, we overcome the limitations of existing models by (reverse) engineering the tricuspid valve from a beating human heart in an organ preservation system. The resulting finite-element model faithfully captures the kinematics and kinetics of the native tricuspid valve as validated against echocardiographic data and others' previous work. To showcase the value of our model, we also use it to simulate disease-induced and repair-induced changes to valve geometry and mechanics. Specifically, we simulate and compare the effectiveness of tricuspid valve repair via surgical annuloplasty and via transcatheter edge-to-edge repair. Importantly, our model is openly available for others to use. Thus, our model will allow us and others to perform virtual experiments on the healthy, diseased, and repaired tricuspid valve to better understand the valve itself and to optimize tricuspid valve repair for better patient outcomes.

16.
Acta Biomater ; 140: 412-420, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-34560301

RESUMO

The mechanics of collagenous soft tissues, such as skin, are sensitive to heat. Thus, quantifying and modeling thermo-mechanical coupling of skin is critical to our understanding of skin's physiology, pathophysiology, and its treatment. However, key gaps persist in our knowledge about skin's coupled thermo-mechanics. Among them, we haven't quantified the role of skin's microstructural organization in its response to superphysiological loading. To fill this gap, we conducted a comprehensive set of experiments in which we combined biaxial mechanical testing with histology and two-photon imaging under liquid heat treatment at temperatures ranging from 37∘C to 95∘C lasting between 2 seconds and 5 minutes. Among other observations, we found that unconstrained skin, when exposed to high temperatures, shrinks anisotropically with the principal direction of shrinkage being aligned with collagen's principal orientation. Additionally, we found that when skin is isometrically constrained, it produces significant forces during denaturation that are also anisotropic. Finally, we found that denaturation significantly alters the mechanical behavior of skin. For short exposure times, this alteration is reflected in a reduction of stiffness at high strains. At long exposure times, the tissue softened to a point where it became untestable. We supplemented our findings with confirmation of collagen denaturation in skin via loss of birefringence and second harmonic generation. Finally, we captured all time-, temperature-, and direction-dependent experimental findings in a hypothetical model. Thus, this work fills a fundamental gap in our current understanding of skin thermo-mechanics and will support future developments in thermal injury prevention, thermal injury management, and thermal therapeutics of skin. STATEMENT OF SIGNIFICANCE: Our work experimentally explores how skin reacts to being heated. That is, it measures how much skin shrinks, what forces it produces, and how its mechanical properties change; all as a function of temperature, but also of direction and time. Additionally, our work connects these measurements to changes in skin's microscopic make-up. This knowledge is important to our understanding of skin's function and dysfunction, especially during burn injuries or heat-dependent treatments.


Assuntos
Colágeno , Pele , Anisotropia , Colágeno/química , Fótons , Estresse Mecânico
17.
J Biomech ; 122: 110413, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-33905970

RESUMO

Optical clearing of biological tissues improves imaging depth for light transmission imaging modalities such as two-photon microscopy. In studies that investigate the interplay between microstructure and tissue-level mechanics, mechanical testing of cleared tissue may be useful. However, the effects of optical clearing on soft tissue mechanics have not been investigated. Thus, we set out to quantify the effects of a simple and effective optical clearing protocol on the mechanics of soft collagenous tissues using ovine mitral valve anterior leaflets as a model system. First, we demonstrate the effectiveness of an isotonic glycerol-DMSO optical clearing protocol in two-photon microscopy. Second, we evaluate the mechanical effects of optical clearing on leaflets under equibiaxial tension in a dependent study design. Lastly, we quantify the shrinkage strain while traction-free and the contractile forces while constrained during clearing. We found the optical clearing protocol to improve two-photon imaging depth from ~100 µm to ~500-800 µm, enabling full-thickness visualization of second-harmonic generation, autofluorescent, and fluorophore-tagged structures. Under equibiaxial tension, cleared tissues exhibited reduced circumferential (p < 0.001) and radial (p = 0.009) transition stretches (i.e. stretch where collagen is recruited), and reduced radial stiffness (p = 0.031). Finally, during clearing we observed ~10-15% circumferential and radial compressive strains, and when constrained, ~2mN of circumferential and radial traction forces. In summary, we suggest the use of this optical clearing agent with mechanical testing be done with care, as it appears to alter the tissue's stress-free configuration and stiffness, likely due to tissue dehydration.


Assuntos
Testes Mecânicos , Valva Mitral , Animais , Colágeno , Ovinos
18.
J Neuroinflammation ; 18(1): 27, 2021 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-33468194

RESUMO

BACKGROUND: Follicular regulatory T (TFR) cells are essential for the regulation of germinal center (GC) response and humoral self-tolerance. Dysregulated follicular helper T (TFH) cell-GC-antibody (Ab) response secondary to dysfunctional TFR cells is the root of an array of autoimmune disorders. The contribution of TFR cells to the pathogenesis of multiple sclerosis (MS) and murine experimental autoimmune encephalomyelitis (EAE) remains largely unclear. METHODS: To determine the impact of dysregulated regulatory T cells (Tregs), TFR cells, and Ab responses on EAE, we compared the MOG-induced EAE in mice with a FoxP3-specific ablation of the transcription factor Blimp1 to control mice. In vitro co-culture assays were used to understand how Tregs and Ab regulate the activity of microglia and central nervous system (CNS)-infiltrating myeloid cells. RESULTS: Mice with a FoxP3-specific deletion of Blimp1 developed severe EAE and failed to recover compared to control mice, reflecting conversion of Tregs into interleukin (IL)-17A/granulocyte-macrophage colony-stimulating factor (GM-CSF)-producing effector T cells associated with increased TFH-Ab responses, more IgE deposition in the CNS, and inability to regulate CNS CD11b+ myeloid cells. Notably, serum IgE titers were positively correlated with EAE scores, and culture of CNS CD11b+ cells with sera from these EAE mice enhanced their activation, while transfer of Blimp1-deficient TFR cells promoted Ab production, activation of CNS CD11b+ cells, and EAE. CONCLUSIONS: Blimp1 is essential for the maintenance of TFR cells and Ab responses in EAE. Dysregulated TFR cells and Ab responses promote CNS autoimmunity.


Assuntos
Formação de Anticorpos/imunologia , Encefalomielite Autoimune Experimental/imunologia , Fator 1 de Ligação ao Domínio I Regulador Positivo/imunologia , Linfócitos T Reguladores/imunologia , Animais , Autoimunidade/imunologia , Diferenciação Celular/imunologia , Centro Germinativo , Camundongos , Camundongos Endogâmicos C57BL
19.
Acta Biomater ; 123: 154-166, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33338654

RESUMO

The right ventricular myocardium, much like the rest of the right side of the heart, has been consistently understudied. Presently, little is known about its mechanics, its microstructure, and its constitutive behavior. In this work, we set out to provide the first data on the mechanics of the mature right ventricular myocardium in both simple shear and uniaxial loading and to compare these data to the mechanics of the left ventricular myocardium. To this end, we tested ovine tissue samples of the right and left ventricle under a comprehensive mechanical testing protocol that consisted of six simple shear modes and three tension/compression modes. After mechanical testing, we conducted a histology-based microstructural analysis on each right ventricular sample that yielded high resolution fiber distribution maps across the entire samples. Equipped with this detailed mechanical and histological data, we employed an inverse finite element framework to determine the optimal form and parameters for microstructure-based constitutive models. The results of our study show that right ventricular myocardium is less stiff then the left ventricular myocardium in the fiber direction, but similarly exhibits non-linear, anisotropic, and tension/compression asymmetric behavior with direction-dependent Poynting effect. In addition, we found that right ventricular myocardial fibers change angles transmurally and are dispersed within the sheet plane and normal to it. Through our inverse finite element analysis, we found that the Holzapfel model successfully fits these data, even when selectively informed by rudimentary microstructural information. And, we found that the inclusion of higher-fidelity microstructural data improved the Holzapfel model's predictive ability. Looking forward, this investigation is a critical step towards understanding the fundamental mechanical behavior of right ventricular myocardium and lays the groundwork for future whole-organ mechanical simulations.


Assuntos
Ventrículos do Coração , Miocárdio , Animais , Anisotropia , Análise de Elementos Finitos , Coração , Ovinos , Estresse Mecânico
20.
Nanotechnology ; 32(14): 145702, 2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33339004

RESUMO

Zn2SnO4 (ZTO) nanocrystals are extensively studied in various fields. However, size-dependent ZTO nanocrystals are still challenging to understand their structural, optical, photocatalytic, and optoelectronic properties. ZTO nanocrystals are synthesized by a facile hydrothermal reaction method. The structural properties of the synthesized ZTO nanocrystals are studied by x-ray diffraction and transmission electron microscope. The sizes of the ZTO nanocrystals are controlled by the pH values of the precursor and the molar ratios of the Zn:Sn in the starting materials. ZTO nanocrystals with the small size of 6 nm and large size of 270 nm are obtained by our method. The Eu3+ ions are doped into ZTO nanocrystals to probe size-dependent Eu doping sites, which shows significant potential applications in light emitting diode phosphors. Moreover, the photocatalytic activity of ZTO nanocrystals on rhodamine (RhB) decoloration are investigated, and the results show that 6 nm ZTO nanocrystals show better performance in the photocatalytic decoloration of RhB compared to 270 nm nanocrystals. Most importantly, we design and fabricate optoelectronic devices to detect IR light based on our nanocrystals and a self-prepared NIR cyanine dye. The device based on small sized ZTO nanocrystals exhibits better device performance under 808 nm IR light compared to that of the large sized ZTO nanocrystals. We believe this work represents ZTO size-dependent properties in term of structural, optical, photocatalytic, and optoelectronic properties as a multifunctional material.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...