Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Vis Exp ; (171)2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-34028436

RESUMO

Neutrons have historically been used for a broad range of biological applications employing techniques such as small-angle neutron scattering, neutron spin echo, diffraction, and inelastic scattering. Unlike neutron scattering techniques that obtain information in reciprocal space, attenuation-based neutron imaging measures a signal in real space that is resolved on the order of tens of micrometers. The principle of neutron imaging follows the Beer-Lambert law and is based on the measurement of the bulk neutron attenuation through a sample. Greater attenuation is exhibited by some light elements (most notably, hydrogen), which are major components of biological samples. Contrast agents such as deuterium, gadolinium, or lithium compounds can be used to enhance contrast in a similar fashion as it is done in medical imaging, including techniques such as optical imaging, magnetic resonance imaging, X-ray, and positron emission tomography. For biological systems, neutron radiography and computed tomography have increasingly been used to investigate the complexity of the underground plant root network, its interaction with soils, and the dynamics of water flux in situ. Moreover, efforts to understand contrast details in animal samples, such as soft tissues and bones, have been explored. This manuscript focuses on the advances in neutron bioimaging such as sample preparation, instrumentation, data acquisition strategy, and data analysis using the High Flux Isotope Reactor CG-1D neutron imaging beamline. The aforementioned capabilities will be illustrated using a selection of examples in plant physiology (herbaceous plant/root/soil system) and biomedical applications (rat femur and mouse lung).


Assuntos
Laboratórios , Difração de Nêutrons , Animais , Isótopos , Camundongos , Nêutrons , Tomografia Computadorizada por Raios X
2.
J Orthop Res ; 38(6): 1208-1215, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31821588

RESUMO

Mechanical fixation of the implant to host bone is an important contributor to orthopedic implant survivorship. The relative importance of bone-implant contact, trabecular bone architecture, and cortical bone geometry to implant fixation strength has never been directly tested, especially in the settings of differential implant surface properties. Thus, using a rat model where titanium rods were placed into the intramedullary canal of the distal femur, we determined the relative contribution of bone-implant contact and peri-implant bone architecture to the fixation strength in implants with different surface roughness: highly polished and smooth (as-received) and dual acid-etched (DAE) implants. Using a training set that maximized variance in implant fixation strength, we initially examined correlation between implant fixation strength and outcome parameters from microcomputed tomography and found that osseointegration volume per total volume (OV/TV), trabecular bone volume per total volume (BV/TV), and cortical thickness (Ct.Th) were the single best compartment-specific predictors of fixation strength. We defined separate regression models to predict implant fixation strength for as-received and DAE implants. When the training set models were applied to independent validation sets, we found strong correlations between predicted and experimentally measured implant fixation strength, with r2 = .843 in as received and r2 = .825 in DAE implants. Interestingly, for as-received implants, OV/TV explained more of the total variance in implant fixation strength than the other variables, whereas in DAE implants, Ct.Th had the most explanatory power, suggesting that surface topography of implants affects which bone compartment is most important in providing implant fixation strength.


Assuntos
Implantes Experimentais , Animais , Fenômenos Biomecânicos , Calcificação Fisiológica , Osseointegração , Ratos , Ratos Sprague-Dawley , Propriedades de Superfície
3.
J Orthop Res ; 38(6): 1216-1227, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-31825107

RESUMO

Biomarkers are of interest to identify patients at risk for peri-implant osteolysis and aseptic loosening. We used a rat model of particle-induced peri-implant osteolysis to investigate if early changes in biomarkers were associated with subsequent implant fixation strength. Implants were placed in rat femora, which were then challenged with intra-articular knee injections of either clean polyethylene, lipopolysaccharide-doped polyethylene, or cobalt-chromium alloy particles, with particle-free vehicle serving as control (n ≥ 8 per group). Rats were weighed weekly, blood was collected at weeks 0, 3, 5, and 6, and locomotor behavior was assessed 4 days before study conclusion. Rats were euthanized 6 weeks post surgery. Week 6 serum was analyzed for five bone remodeling markers, while longitudinal serum was assessed for osteocalcin. Bone-implant contact, peri-implant trabecular architecture, and implant fixation strength were measured. Rats challenged with cobalt-chromium particles had a significant reduction in implant fixation strength compared with the vehicle-control group (P = .034). This group also had elevated serum osteocalcin (P = .005), depressed weight gain (P = .001) and less frequent rearing behavior (P = .029). Regardless of group, change in serum osteocalcin at week 3 (r = -.368; P = .046), change in weight at week 2 (r = .586; P < .001), as well as weight change at all other time intervals were associated with fixation strength. The finding that early alterations in serum osteocalcin and body weight were predictive of subsequent implant fixation strength supports continued investigation of biomarkers for early detection of peri-implant osteolysis and implant loosening. Further, change in biomarker levels was found to be more indicative of implant fixation status than any single measurement.


Assuntos
Peso Corporal , Implantes Experimentais/efeitos adversos , Osteocalcina/sangue , Animais , Biomarcadores/sangue , Remodelação Óssea , Lipopolissacarídeos/farmacologia , Masculino , Atividade Motora , Osteólise , Polietileno/farmacologia , Ratos , Ratos Sprague-Dawley
4.
Biomater Res ; 23: 15, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31641529

RESUMO

BACKGROUND: Collagen-based scaffolds reinforced with hydroxyapatite (HA) are an attractive choice for bone tissue engineering because their composition mimics that of bone. We previously reported the development of compression-molded collagen-HA scaffolds that exhibited high porosity, interconnected pores, and mechanical properties that were well-suited for surgical handling and fixation. The objective of this study was to investigate these novel collagen-HA scaffolds in combination with human adipose-derived stem cells (hASCs) as a template for bone formation in a subcutaneous athymic mouse model. METHODS: Collagen-HA scaffolds and collagen-only scaffolds were fabricated as previously described, and a clinically approved bone void filler was used as a control for the material. Constructs were seeded with hASCs and were pre-treated with either control or osteogenic media. A cell-free group was also included. Scaffolds were implanted subcutaneously in the backs of athymic nude mice for 8 weeks. Mineral deposition was quantified via micro-computed tomography. Histological and immunofluorescence images of the explants were used to analyze their vascular invasion, remodeling and cellularity. RESULTS: Cell-free collagen-HA scaffolds and those that were pre-seeded with osteogenically differentiated hASCs supported mineral deposition and vascular invasion at comparable rates, while cell-seeded constructs treated with the control medium showed lower mineralization after implantation. HA-reinforcement allowed collagen constructs to maintain their shape, provided improved cell-tissue-scaffold integration, and resulted in a more organized tissue when pre-treated in an osteogenic medium. Scaffold type and pre-treatment also determined osteoclast activity and therefore potential remodeling of the constructs. CONCLUSIONS: The results of this study cumulatively indicate that treatment medium and scaffold composition direct mineralization and angiogenic tissue formation in an ectopic model. The data suggest that it may be necessary to match the scaffold with a particular cell type and cell-specific pre-treatment to achieve optimal bone formation.

5.
J Bone Miner Metab ; 37(4): 648-657, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30361872

RESUMO

Dietary calcium (Ca) restriction during lactation in the rat, which induces intra-cortical and endocortical remodeling, has been proposed as a model to study bone matrix maturation in the adult skeleton. The purpose of this study was to assess the effects of dietary Ca restriction during lactation on post-weaning mineral metabolism and bone formation. Mated female Sprague-Dawley rats were randomized into groups receiving either 0.6% Ca (lactation/normal Ca) or 0.01% Ca (lactation/low Ca) diets during lactation. Virgin animals fed normal Ca were used as controls (virgin/normal Ca). At the time of weaning, animals on the low Ca diet were returned to normal Ca and cohorts of all three groups were sacrificed at days 0, 1, 2, 7, and 14 post-weaning. Lactation caused bone loss, particularly at the endocortical surface, but the amount was not affected by dietary Ca. Rats in the lactation/low Ca group had increased cortical porosity compared to the other groups, particularly within the size range of secondary osteons. Dietary Ca restriction during lactation did not affect post-weaning bone formation kinetics or serum Ca and phosphate levels. In both lactation groups, there was a transient increase in phosphate and fibroblast growth factor 23 (FGF23) post-weaning, which trended toward virgin/normal Ca levels over time. Thus, the additional challenge of low dietary Ca during lactation to induce intra-cortical remodeling in the rat has minimal effects on bone formation kinetics and mineral metabolism during the post-weaning period, providing further justification for this model to study matrix maturation in the adult skeleton.


Assuntos
Osso e Ossos/fisiologia , Cálcio da Dieta/farmacologia , Lactação/efeitos dos fármacos , Minerais/metabolismo , Desmame , Animais , Densidade Óssea/efeitos dos fármacos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/efeitos dos fármacos , Cálcio/metabolismo , Feminino , Osteogênese/efeitos dos fármacos , Fosfatos/metabolismo , Porosidade , Gravidez , Ratos Sprague-Dawley , Microtomografia por Raio-X
6.
J Orthop Res ; 36(3): 979-986, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-28851105

RESUMO

Histology and backscatter scanning electron microscopy (bSEM) are the current gold standard methods for quantifying bone-implant contact (BIC), but are inherently destructive. Microcomputed tomography (µCT) is a non-destructive alternative, but attempts to validate µCT-based assessment of BIC in animal models have produced conflicting results. We previously showed in a rat model using a 1.5 mm diameter titanium implant that the extent of the metal-induced artefact precluded accurate measurement of bone sufficiently close to the interface to assess BIC. Recently introduced commercial laboratory µCT scanners have smaller voxels and improved imaging capabilities, possibly overcoming this limitation. The goals of the present study were to establish an approach for optimizing µCT imaging parameters and to validate µCT-based assessment of BIC. In an empirical parametric study using a 1.5 mm diameter titanium implant, we determined 90 kVp, 88 µA, 1.5 µm isotropic voxel size, 1600 projections/180°, and 750 ms integration time to be optimal. Using specimens from an in vivo rat experiment, we found significant correlations between bSEM and µCT for BIC with the manufacturer's automated analysis routine (r = 0.716, p = 0.003) or a line-intercept method (r = 0.797, p = 0.010). Thus, this newer generation scanner's improved imaging capability reduced the extent of the metal-induced artefact zone enough to permit assessment of BIC. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:979-986, 2018.


Assuntos
Osso e Ossos/diagnóstico por imagem , Próteses e Implantes , Microtomografia por Raio-X/métodos , Animais , Titânio
7.
J Tissue Eng Regen Med ; 12(1): e541-e549, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-27690279

RESUMO

Key aspects of native endochondral bone development and fracture healing can be mimicked in mesenchymal stem cells (MSCs) through standard in vitro chondrogenic induction. Exploiting this phenomenon has recently emerged as an attractive technique to engineer bone tissue, however, relatively little is known about the best conditions for doing so. The objective of the present study was to compare the bone-forming capacity and angiogenic induction of hypertrophic cell constructs containing human adipose-derived stem cells (hASCs) primed for chondrogenesis in two different culture systems: high-density pellets and alginate bead hydrogels. The hASC constructs were subjected to 4 weeks of identical chondrogenic induction in vitro, encapsulated in an agarose carrier, and then implanted subcutaneously in immune-compromised mice for 8 weeks to evaluate their endochondral potential. At the time of implantation, both pellets and beads expressed aggrecan and type II collagen, as well as alkaline phosphatase (ALP) and type X collagen. Interestingly, ASCs in pellets formed a matrix containing higher glycosaminoglycan and collagen contents than that in beads, and ALP activity per cell was higher in pellets. However, after 8 weeks in vivo, pellets and beads induced an equivalent volume of mineralized tissue and a comparable level of vascularization. Although osteocalcin and osteopontin-positive osteogenic tissue and new vascular growth was found within both types of constructs, all appeared to be better distributed throughout the hydrogel beads. The results of this ectopic model indicate that hydrogel culture may be an attractive alternative to cell pellets for bone tissue engineering via the endochondral pathway. Copyright © 2016 John Wiley & Sons, Ltd.


Assuntos
Alginatos/química , Técnicas de Cultura de Células/métodos , Osteogênese , Animais , Biomarcadores , Condrogênese , Feminino , Humanos , Hipertrofia , Implantes Experimentais , Camundongos
8.
J Biomed Mater Res A ; 104(9): 2178-88, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27112109

RESUMO

Acellular hydroxyapatite (HA) reinforced collagen scaffolds were previously reported to induce angiogenesis and osteogenesis after ectopic implantation but the effect of the HA volume fraction was not investigated. Therefore, the objective of this study was to investigate the effect of HA volume fraction on in vivo angiogenesis and osteogenesis in acellular collagen scaffolds containing 0, 20, and 40 vol % HA after subcutaneous ectopic implantation for up to 12 weeks in mice. Endogenous cell populations were able to completely and uniformly infiltrate the entire scaffold within 6 weeks independent of the HA content, but the cell density was increased in scaffolds containing HA versus collagen alone. Angiogenesis, remodeling of the original scaffold matrix, mineralization, and osteogenic gene expression were evident in scaffolds containing HA, but were not observed in collagen scaffolds. Moreover, HA promoted a dose-dependent increase in measured vascular density, cell density, matrix deposition, and mineralization. Therefore, the results of this study suggest that HA promoted the recruitment and differentiation of endogenous cell populations to support angiogenic and osteogenic activity in collagen scaffolds after subcutaneous ectopic implantation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2178-2188, 2016.


Assuntos
Colágeno/química , Durapatita/química , Regulação da Expressão Gênica , Modelos Biológicos , Neovascularização Fisiológica , Osteogênese , Alicerces Teciduais/química , Animais , Feminino , Camundongos , Camundongos Nus
9.
Acta Biomater ; 17: 16-25, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25644451

RESUMO

Hydroxyapatite (HA) reinforced collagen scaffolds have shown promise for synthetic bone graft substitutes and tissue engineering scaffolds. Freeze-dried HA-collagen scaffolds are readily fabricated and have exhibited osteogenicity in vivo, but are limited by an inherent scaffold architecture that results in a relatively small pore size and weak mechanical properties. In order to overcome these limitations, HA-collagen scaffolds were prepared by compression molding HA reinforcements and paraffin microspheres within a suspension of concentrated collagen fibrils (∼ 180 mg/mL), cross-linking the collagen matrix, and leaching the paraffin porogen. HA-collagen scaffolds exhibited an architecture with high porosity (85-90%), interconnected pores ∼ 300-400 µm in size, and struts ∼ 3-100 µm in thickness containing 0-80 vol% HA whisker or powder reinforcements. HA reinforcement enabled a compressive modulus of up to ∼ 1 MPa, which was an order of magnitude greater than unreinforced collagen scaffolds. The compressive modulus was also at least one order of magnitude greater than comparable freeze-dried HA-collagen scaffolds and two orders of magnitude greater than absorbable collagen sponges used clinically. Moreover, scaffolds reinforced with up to 60 vol% HA exhibited fully recoverable elastic deformation upon loading to 50% compressive strain for at least 100,000 cycles. Thus, the scaffold mechanical properties were well-suited for surgical handling, fixation, and bearing osteogenic loads during bone regeneration. The scaffold architecture, permeability, and composition were shown to be conducive to the infiltration and differentiation of adipose-derive stromal cells in vitro. Acellular scaffolds were demonstrated to induce angiogenesis and osteogenesis after subcutaneous ectopic implantation by recruiting endogenous cell populations, suggesting that the scaffolds were osteoinductive.


Assuntos
Materiais Biocompatíveis/química , Colágeno/química , Durapatita/química , Alicerces Teciduais , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Transplante Ósseo , Bovinos , Congelamento , Humanos , Neovascularização Fisiológica , Osteogênese , Parafina/química , Pós , Pressão , Estresse Mecânico , Engenharia Tecidual/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...