Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Mol Cell Cardiol ; 103: 1-10, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28017639

RESUMO

Sphingosine-1-phosphate (S1P), a bioactive lysophospholipid, is generated and released at sites of tissue injury in the heart and can act on S1P1, S1P2, and S1P3 receptor subtypes to affect cardiovascular responses. We established that S1P causes little phosphoinositide hydrolysis and does not induce hypertrophy indicating that it does not cause receptor coupling to Gq. We previously demonstrated that S1P confers cardioprotection against ischemia/reperfusion by activating RhoA and its downstream effector PKD. The S1P receptor subtypes and G proteins that regulate RhoA activation and downstream responses in the heart have not been determined. Using siRNA or pertussis toxin to inhibit different G proteins in NRVMs we established that S1P regulates RhoA activation through Gα13 but not Gα12, Gαq, or Gαi. Knockdown of the three major S1P receptors using siRNA demonstrated a requirement for S1P3 in RhoA activation and subsequent phosphorylation of PKD, and this was confirmed in studies using isolated hearts from S1P3 knockout (KO) mice. S1P treatment reduced infarct size induced by ischemia/reperfusion in Langendorff perfused wild-type (WT) hearts and this protection was abolished in the S1P3 KO mouse heart. CYM-51736, an S1P3-specific agonist, also decreased infarct size after ischemia/reperfusion to a degree similar to that achieved by S1P. The finding that S1P3 receptor- and Gα13-mediated RhoA activation is responsible for protection against ischemia/reperfusion suggests that selective targeting of S1P3 receptors could provide therapeutic benefits in ischemic heart disease.


Assuntos
Miócitos Cardíacos/metabolismo , Pró-Proteína Convertases/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Serina Endopeptidases/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo , Animais , Cardiomegalia/etiologia , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Lisofosfolipídeos/metabolismo , Masculino , Camundongos , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Ligação Proteica , Ratos , Transdução de Sinais , Esfingosina/análogos & derivados , Esfingosina/metabolismo , Canais de Cátion TRPP/metabolismo
2.
J Biol Chem ; 288(24): 17111-21, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23625929

RESUMO

PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.


Assuntos
Proteínas de Ancoragem à Quinase A/química , Técnicas de Visualização da Superfície Celular , Proteínas de Ancoragem à Quinase A/genética , Proteínas de Ancoragem à Quinase A/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Sequência Consenso , Células HEK293 , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Proteínas de Membrana/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Transporte Proteico , Análise de Sequência de DNA
3.
Proc Natl Acad Sci U S A ; 108(48): E1227-35, 2011 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-22084075

RESUMO

A-kinase anchoring proteins (AKAPs) tether the cAMP-dependent protein kinase (PKA) to intracellular sites where they preferentially phosphorylate target substrates. Most AKAPs exhibit nanomolar affinity for the regulatory (RII) subunit of the type II PKA holoenzyme, whereas dual-specificity anchoring proteins also bind the type I (RI) regulatory subunit of PKA with 10-100-fold lower affinity. A range of cellular, biochemical, biophysical, and genetic approaches comprehensively establish that sphingosine kinase interacting protein (SKIP) is a truly type I-specific AKAP. Mapping studies located anchoring sites between residues 925-949 and 1,140-1,175 of SKIP that bind RI with dissociation constants of 73 and 774 nM, respectively. Molecular modeling and site-directed mutagenesis approaches identify Phe 929 and Tyr 1,151 as RI-selective binding determinants in each anchoring site. SKIP complexes exist in different states of RI-occupancy as single-molecule pull-down photobleaching experiments show that 41 ± 10% of SKIP sequesters two YFP-RI dimers, whereas 59 ± 10% of the anchoring protein binds a single YFP-RI dimer. Imaging, proteomic analysis, and subcellular fractionation experiments reveal that SKIP is enriched at the inner mitochondrial membrane where it associates with a prominent PKA substrate, the coiled-coil helix protein ChChd3.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Conformação Proteica , Proteínas de Ancoragem à Quinase A/genética , Proteínas Adaptadoras de Transdução de Sinal/genética , Análise de Variância , Animais , Western Blotting , Linhagem Celular , Clonagem Molecular , Humanos , Imunoprecipitação , Espectrometria de Massas , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica/genética , Ressonância de Plasmônio de Superfície , Transfecção
4.
Cardiovasc Res ; 82(2): 193-200, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19282351

RESUMO

The five known members of the sphingosine-1-phosphate (S1P) receptor family exhibit diverse tissue expression profiles and couple to distinct G-protein-mediated signalling pathways. S1P1, S1P2, and S1P3 receptors are all present in the heart, but the ratio of these subtypes differs for various cardiac cells. The goal of this review is to summarize data concerning which S1P receptor subtypes regulate cardiac physiology and pathophysiology, which G-proteins and signalling pathways they couple to, and in which cell types they are expressed. The available information is based on studies using a lamentably limited set of pharmacological agonists/antagonists, but is complemented by work with S1P receptor subtype-specific knockout mice and sphingosine kinase knockout mice. In cardiac myocytes, the S1P1 receptor subtype is the predominant subtype expressed, and the activation of this receptor inhibits cAMP formation and antagonizes adrenergic receptor-mediated contractility. The S1P3 receptor, while expressed at lower levels, mediates the bradycardic effect of S1P agonists. Studies using knockout mice indicate that S1P2 and S1P3 receptors play a major role in mediating cardioprotection from ischaemia/reperfusion injury in vivo. S1P receptors are also involved in remodelling, proliferation, and differentiation of cardiac fibroblasts, a cell type in which the S1P3 receptor predominates. Receptors for S1P are also present in endothelial and smooth muscle cells where they mediate peripheral vascular tone and endothelial responses, but the role of this regulatory system in the cardiac vasculature is unknown. Further understanding of the contributions of each cell and receptor subtype to cardiac function and pathophysiology should expedite consideration of the endogenous S1P signalling pathway as a therapeutic target for cardiovascular disease.


Assuntos
Coração/fisiologia , Receptores de Lisoesfingolipídeo/fisiologia , Transdução de Sinais/fisiologia , Animais , Doenças Cardiovasculares/fisiopatologia , Modelos Animais de Doenças , Proteínas de Ligação ao GTP/fisiologia , Coração/fisiopatologia , Humanos , Camundongos , Músculo Liso Vascular/fisiologia , Músculo Liso Vascular/fisiopatologia
5.
IUBMB Life ; 61(4): 394-406, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19319965

RESUMO

Protein scaffold complexes are a key mechanism by which a common signaling pathway can serve many different functions. Sequestering a signaling enzyme to a specific subcellular environment not only ensures that the enzyme is near its relevant targets, but also segregates this activity to prevent indiscriminate phosphorylation of other substrates. One family of diverse, well-studied scaffolding proteins are the A-kinase anchoring proteins (AKAPs). These anchoring proteins form multi-protein complexes that integrate cAMP signaling with other pathways and signaling events. In this review, we focus on recent advances in the elucidation of AKAP function.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Modelos Genéticos , Complexos Multiproteicos/metabolismo , Transdução de Sinais/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Animais , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Masculino , Melanossomas/metabolismo , Miocárdio/metabolismo , Oócitos/metabolismo , Transdução de Sinais/genética , Espermatozoides/metabolismo
6.
Am J Physiol Heart Circ Physiol ; 292(6): H2944-51, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17293497

RESUMO

Sphingosine 1-phosphate (S1P) is released at sites of tissue injury and effects cellular responses through activation of G protein-coupled receptors. The role of S1P in regulating cardiomyocyte survival following in vivo myocardial ischemia-reperfusion (I/R) injury was examined by using mice in which specific S1P receptor subtypes were deleted. Mice lacking either S1P(2) or S1P(3) receptors and subjected to 1-h coronary occlusion followed by 2 h of reperfusion developed infarcts equivalent to those of wild-type (WT) mice. However, in S1P(2,3) receptor double-knockout mice, infarct size following I/R was increased by >50%. I/R leads to activation of ERK, JNK, and p38 MAP kinases; however, these responses were not diminished in S1P(2,3) receptor knockout compared with WT mice. In contrast, activation of Akt in response to I/R was markedly attenuated in S1P(2,3) receptor knockout mouse hearts. Neither S1P(2) nor S1P(3) receptor deletion alone impaired I/R-induced Akt activation, which suggests redundant signaling through these receptors and is consistent with the finding that deletion of either receptor alone did not increase I/R injury. The involvement of cardiomyocytes in S1P(2) and S1P(3) receptor mediated activation of Akt was tested by using cells from WT and S1P receptor knockout hearts. Akt was activated by S1P, and this was modestly diminished in cardiomyocytes from S1P(2) or S1P(3) receptor knockout mice and completely abolished in the S1P(2,3) receptor double-knockout myocytes. Our data demonstrate that activation of S1P(2) and S1P(3) receptors plays a significant role in protecting cardiomyocytes from I/R damage in vivo and implicate the release of S1P and receptor-mediated Akt activation in this process.


Assuntos
Lisofosfolipídeos/metabolismo , Infarto do Miocárdio/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Lisoesfingolipídeo/metabolismo , Transdução de Sinais , Esfingosina/análogos & derivados , Animais , Células Cultivadas , Modelos Animais de Doenças , Ativação Enzimática , Lisofosfolipídeos/farmacologia , Lisofosfolipídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases , Camundongos , Camundongos Transgênicos , Infarto do Miocárdio/enzimologia , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/patologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/complicações , Isquemia Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/enzimologia , Traumatismo por Reperfusão Miocárdica/etiologia , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Receptores de Lisoesfingolipídeo/agonistas , Receptores de Lisoesfingolipídeo/deficiência , Receptores de Lisoesfingolipídeo/genética , Transdução de Sinais/efeitos dos fármacos , Esfingosina/metabolismo , Esfingosina/farmacologia , Esfingosina/uso terapêutico , Receptores de Esfingosina-1-Fosfato
7.
J Mol Cell Cardiol ; 36(4): 481-93, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15081308

RESUMO

The effect of the lysophospholipid, lysophosphatidic acid (LPA), on signaling and hypertrophy of neonatal rat ventricular cardiomyocytes was examined. Myocytes express mRNA for all three G-protein-coupled LPA receptor subtypes (LPA(1)/Edg-2, LPA(2)/Edg-4, and LPA(3)/Edg-7) as indicated by RT-PCR analysis. LPA inhibits isoproterenol-stimulated cyclic AMP accumulation with an IC(50) approximately 40 nM and promotes phosphorylation of ERK-1/2. LPA also elicits a small, slow onset, and activation of phosphoinositide hydrolysis with EC(50) approximately 400 nM, and stimulates a marked increase in the extent of Rho activation. Longer-term treatment with LPA induces a hypertrophic response in myocytes as indicated by increases in cell size, actin organization, ANF staining of the perinuclear region and activation of ANF promoter-luciferase gene expression. Pretreatment of myocytes with pertussis toxin (PTX) not only blocks the capacity of LPA to inhibit cyclic AMP formation and stimulate ERK phosphorylation, but also inhibits hypertrophic changes in cell morphology and ANF-luciferase gene expression. Neither phospholipase C nor Rho activation is PTX sensitive. The hypertrophic effects of LPA on myocytes are also inhibited by treatment with C3 exoenzyme or by transfection of plasmids expressing either C3 exoenzyme or dominant-negative Rho to block Rho function. Inhibition of ERK activation with PD98059 blocks LPA-induced hypertrophy while inhibitors of phospholipase C (U73122), PKC (GF109203X), or p38MAPK (SB203580) do not. These data suggest that LPA induces cardiomyocyte hypertrophy via a pathway different from the conventional G(q) pathway utilized by phenylephrine, endothelin, and PGF2 alpha and involving activation of a PTX-sensitive G(i)/ERK pathway in conjunction with activation of Rho-mediated signals.


Assuntos
Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Lisofosfolipídeos/metabolismo , Lisofosfolipídeos/farmacologia , Miócitos Cardíacos/patologia , Proteínas rho de Ligação ao GTP/metabolismo , Adenilil Ciclases/metabolismo , Animais , Animais Recém-Nascidos , Western Blotting , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Estrenos/farmacologia , Flavonoides/farmacologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Hidrólise , Concentração Inibidora 50 , Luciferases/metabolismo , Lisofosfolipídeos/química , Microscopia de Fluorescência , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Modelos Biológicos , Toxina Pertussis/farmacologia , Fosfatidilinositóis/química , Biossíntese de Proteínas , Proteína Quinase C/antagonistas & inibidores , Proteínas/química , Pirrolidinonas/farmacologia , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Transfecção , Fosfolipases Tipo C/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...