Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am Nat ; 191(2): 250-258, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29351012

RESUMO

Age-specific survival and reproduction are closely linked to fitness and therefore subject to strong selection that typically limits their variability within species. Furthermore, adult survival rate in vertebrate populations is typically less variable over time than other life-history traits, such as fecundity or recruitment. Hence, adult survival is often conserved within a population over time, compared to the variation in survival found across taxa. In stark contrast to this general pattern, we report evidence of extreme short-term variation of adult survival in Rose's mountain toadlet (Capensibufo rosei), which is apparently climate induced. Over 7 years, annual survival rate varied between 0.04 and 0.92, and 94% of this variation was explained by variation in breeding-season rainfall. Preliminary results suggest that this variation reflects adaptive life-history plasticity to a degree thus far unrecorded for any vertebrate, rather than direct rainfall-induced mortality. In wet years, these toads appeared to achieve increased reproduction at the expense of their own survival, whereas in dry years, their survival increased at the expense of reproduction. Such environmentally induced plasticity may reflect a diversity of life-history strategies not previously appreciated among vertebrates.


Assuntos
Adaptação Fisiológica , Bufonidae/fisiologia , Características de História de Vida , Chuva , Reprodução , Animais , Feminino , Masculino , África do Sul
2.
J Environ Manage ; 205: 286-297, 2018 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-29024897

RESUMO

Alien species can have major ecological and socioeconomic impacts in their novel ranges and so effective management actions are needed. However, management can be contentious and create conflicts, especially when stakeholders who benefit from alien species are different from those who incur costs. Such conflicts of interests mean that management strategies can often not be implemented. There is, therefore, increasing interest in engaging stakeholders affected by alien species or by their management. Through a facilitated workshop and consultation process including academics and managers working on a variety of organisms and in different areas (urban and rural) and ecosystems (terrestrial and aquatic), we developed a framework for engaging stakeholders in the management of alien species. The proposed framework for stakeholder engagement consists of 12 steps: (1) identify stakeholders; (2) select key stakeholders for engagement; (3) explore key stakeholders' perceptions and develop initial aims for management; (4) engage key stakeholders in the development of a draft management strategy; (5) re-explore key stakeholders' perceptions and revise the aims of the strategy; (6) co-design general aims, management objectives and time frames with key stakeholders; (7) co-design a management strategy; (8) facilitate stakeholders' ownership of the strategy and adapt as required; and (9) implement the strategy and monitor management actions to evaluate the need for additional or future actions. In case additional management is needed after these actions take place, some extra steps should be taken: (10) identify any new stakeholders, benefits, and costs; (11) monitor engagement; and (12) revise management strategy. Overall, we believe that our framework provides an effective approach to minimize the impact of conflicts created by alien species management.


Assuntos
Ecologia , Ecossistema , Espécies Introduzidas
3.
Sci Rep ; 7(1): 1091, 2017 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-28439068

RESUMO

The Cape platanna, Xenopus gilli, an endangered frog, hybridizes with the African clawed frog, X. laevis, in South Africa. Estimates of the extent of gene flow between these species range from pervasive to rare. Efforts have been made in the last 30 years to minimize hybridization between these two species in the west population of X. gilli, but not the east populations. To further explore the impact of hybridization and the efforts to minimize it, we examined molecular variation in one mitochondrial and 13 nuclear genes in genetic samples collected recently (2013) and also over two decades ago (1994). Despite the presence of F 1 hybrids, none of the genomic regions we surveyed had evidence of gene flow between these species, indicating a lack of extensive introgression. Additionally we found no significant effect of sampling time on genetic diversity of populations of each species. Thus, we speculate that F 1 hybrids have low fitness and are not backcrossing with the parental species to an appreciable degree. Within X. gilli, evidence for gene flow was recovered between eastern and western populations, a finding that has implications for conservation management of this species and its threatened habitat.


Assuntos
Quimera/genética , Variação Genética , Xenopus/genética , Animais , Fluxo Gênico , Genômica , África do Sul
4.
PeerJ ; 5: e3135, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28439454

RESUMO

BACKGROUND: The Australian redclaw crayfish (Cherax quadricarinatus, von Martens), is native to Australasia, but has been widely translocated around the world due to aquaculture and aquarium trade. Mostly as a result of escape from aquaculture facilities, this species has established extralimital populations in Australia and alien populations in Europe, Asia, Central America and Africa. In South Africa, C. quadricarinatus was first sampled from the wild in 2002 in the Komati River, following its escape from an aquaculture facility in Swaziland, but data on the current status of its populations are not available. METHODS: To establish a better understanding of its distribution, rate of spread and population status, we surveyed a total of 46 sites in various river systems in South Africa and Swaziland. Surveys were performed between September 2015 and August 2016 and involved visual observations and the use of collapsible crayfish traps. RESULTS: Cherax quadricarinatus is now present in the Komati, Lomati, Mbuluzi, Mlawula and Usutu rivers, and it was also detected in several off-channel irrigation impoundments. Where present, it was generally abundant, with populations having multiple size cohorts and containing ovigerous females. In the Komati River, it has spread more than 112 km downstream of the initial introduction point and 33 km upstream of a tributary, resulting in a mean spread rate of 8 km year-1 downstream and 4.7 km year-1 upstream. In Swaziland, estimated downstream spread rate might reach 14.6 km year-1. Individuals were generally larger and heavier closer to the introduction site, which might be linked to juvenile dispersal. DISCUSSION: These findings demonstrate that C. quadricarinatus is established in South Africa and Swaziland and that the species has spread, not only within the river where it was first introduced, but also between rivers. Considering the strong impacts that alien crayfish usually have on invaded ecosystems, assessments of its potential impacts on native freshwater biota and an evaluation of possible control measures are, therefore, urgent requirements.

5.
Ecol Evol ; 7(8): 2661-2670, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28428857

RESUMO

The magnitude of impacts some alien species cause to native environments makes them targets for regulation and management. However, which species to target is not always clear, and comparisons of a wide variety of impacts are necessary. Impact scoring systems can aid management prioritization of alien species. For such tools to be objective, they need to be robust to assessor bias. Here, we assess the newly proposed Environmental Impact Classification for Alien Taxa (EICAT) used for amphibians and test how outcomes differ between assessors. Two independent assessments were made by Kraus (Annual Review of Ecology Evolution and Systematics, 46, 2015, 75-97) and Kumschick et al. (Neobiota, 33, 2017, 53-66), including independent literature searches for impact records. Most of the differences between these two classifications can be attributed to different literature search strategies used with only one-third of the combined number of references shared between both studies. For the commonly assessed species, the classification of maximum impacts for most species is similar between assessors, but there are differences in the more detailed assessments. We clarify one specific issue resulting from different interpretations of EICAT, namely the practical interpretation and assigning of disease impacts in the absence of direct evidence of transmission from alien to native species. The differences between assessments outlined here cannot be attributed to features of the scheme. Reporting bias should be avoided by assessing all alien species rather than only the seemingly high-impacting ones, which also improves the utility of the data for management and prioritization for future research. Furthermore, assessments of the same taxon by various assessors and a structured review process for assessments, as proposed by Hawkins et al. (Diversity and Distributions, 21, 2015, 1360), can ensure that biases can be avoided and all important literature is included.

6.
PLoS One ; 11(6): e0154869, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27248830

RESUMO

By altering or eliminating delicate ecological relationships, non-indigenous species are considered a major threat to biodiversity, as well as a driver of environmental change. Global climate change affects ecosystems and ecological communities, leading to changes in the phenology, geographic ranges, or population abundance of several species. Thus, predicting the impacts of global climate change on the current and future distribution of invasive species is an important subject in macroecological studies. The African clawed frog (Xenopus laevis), native to South Africa, possesses a strong invasion potential and populations have become established in numerous countries across four continents. The global invasion potential of X. laevis was assessed using correlative species distribution models (SDMs). SDMs were computed based on a comprehensive set of occurrence records covering South Africa, North America, South America and Europe and a set of nine environmental predictors. Models were built using both a maximum entropy model and an ensemble approach integrating eight algorithms. The future occurrence probabilities for X. laevis were subsequently computed using bioclimatic variables for 2070 following four different IPCC scenarios. Despite minor differences between the statistical approaches, both SDMs predict the future potential distribution of X. laevis, on a global scale, to decrease across all climate change scenarios. On a continental scale, both SDMs predict decreasing potential distributions in the species' native range in South Africa, as well as in the invaded areas in North and South America, and in Australia where the species has not been introduced. In contrast, both SDMs predict the potential range size to expand in Europe. Our results suggest that all probability classes will be equally affected by climate change. New regional conditions may promote new invasions or the spread of established invasive populations, especially in France and Great Britain.


Assuntos
Mudança Climática , Espécies Introduzidas , Animais , Modelos Teóricos , Xenopus laevis
7.
PeerJ ; 4: e1659, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26855879

RESUMO

Due to both deliberate and accidental introductions, invasive African Clawed Frog (Xenopus laevis) populations have become established worldwide. In this study, we investigate the geographic origins of invasive X. laevis populations in France and Portugal using the phylogeographic structure of X. laevis in its native South African range. In total, 80 individuals from the whole area known to be invaded in France and Portugal were analysed for two mitochondrial and three nuclear genes, allowing a comparison with 185 specimens from the native range. Our results show that native phylogeographic lineages have contributed differently to invasive European X. laevis populations. In Portugal, genetic and historical data suggest a single colonization event involving a small number of individuals from the south-western Cape region in South Africa. In contrast, French invasive X. laevis encompass two distinct native phylogeographic lineages, i.e., one from the south-western Cape region and one from the northern regions of South Africa. The French X. laevis population is the first example of a X. laevis invasion involving multiple lineages. Moreover, the lack of population structure based on nuclear DNA suggests a potential role for admixture within the invasive French population.

8.
Syst Parasitol ; 92(2): 131-9, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26358072

RESUMO

Meteterakis saotomensis n. sp. is described from Schistometopum thomense (Bocage), a gymnophionan endemic to the oceanic island of São Tomé in the Gulf of Guinea. The specimens were assigned to Meteterakis Karve, 1930, based on the possession of a head with three rounded lips, not set-off from the body, the absence of interlabia and cordons, females with a long vagina and males with a preanal sucker, surrounded by a cuticularised rim and caudal alae that are supported by fleshy papillae. The new species is characterised by: body length 4.2-4.5 mm (males) and 5.1-6.4 mm (females); total length of oesophagus, including pharyngeal portion and oesophageal bulb, 820-856 µm (males) and 898-1,070 µm (females); length of pharynx 57-58 µm (males) and 65-68 µm (females); spicules equal, 410-521 µm long, with tessellated ornamentation throughout their length and alae, and with bevelled tip; gubernaculum or 'gubernacular mass' absent; tail length 164-176 µm (males) and 214-239 µm (females), with elongated tip; vulva at 2.3-2.8 mm from anterior end, with anterior lip forming small flap. This is the second species of Meteterakis reported from gymnophionan hosts and the first from the Afrotropical region. Selected comparative morphological data for Meteterakis spp. are presented, and data on host range and geographic distribution are updated. The name M. striaturus Oshmarin & Demshin, 1972 is corrected to M. striatura to reflect the female gender of the genus name.


Assuntos
Anfíbios/parasitologia , Nematoides/classificação , Animais , Ilhas Atlânticas , Feminino , Ilhas , Masculino , Nematoides/anatomia & histologia , Especificidade da Espécie
9.
PeerJ ; 3: e1204, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26336644

RESUMO

Background. Frogs are generalist predators of a wide range of typically small prey items. But descriptions of dietary items regularly include other anurans, such that frogs are considered to be among the most important of anuran predators. However, the only existing hypothesis for the inclusion of anurans in the diet of post-metamorphic frogs postulates that it happens more often in bigger frogs. Moreover, this hypothesis has yet to be tested. Methods. We reviewed the literature on frog diet in order to test the size hypothesis and determine whether there are other putative explanations for anurans in the diet of post-metamorphic frogs. In addition to size, we recorded the habitat, the number of other sympatric anuran species, and whether or not the population was invasive. We controlled for taxonomic bias by including the superfamily in our analysis. Results. Around one fifth of the 355 records included anurans as dietary items of populations studied, suggesting that frogs eating anurans is not unusual. Our data showed a clear taxonomic bias with ranids and pipids having a higher proportion of anuran prey than other superfamilies. Accounting for this taxonomic bias, we found that size in addition to being invasive, local anuran diversity, and habitat produced a model that best fitted our data. Large invasive frogs that live in forests with high anuran diversity are most likely to have a higher proportion of anurans in their diet. Conclusions. We confirm the validity of the size hypothesis for anurophagy, but show that there are additional significant variables. The circumstances under which frogs eat frogs are likely to be complex, but our data may help to alert conservationists to the possible dangers of invading frogs entering areas with threatened anuran species.

10.
Peptides ; 63: 118-25, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25433327

RESUMO

The International Union for Conservation of Nature (IUCN) Endangered Cape Platanna Xenopus gilli inhabits disjunct ranges at the tip of Cape Peninsula and near the town of Kleinmond on opposite sides of False Bay in the extreme southwest of Africa. Peptidomic analysis of host-defense peptides in norepinephrine-stimulated skin secretions from frogs from the Cape Peninsula range resulted in the identification of two magainins, two peptide glycine-leucine-amide (PGLa) peptides, two xenopsin-precursor fragment (XPF) peptides, nine caerulein-precursor fragment (CPF) peptides, and a peptide related to peptide glycine-glutamine (PGQ) previously found in an extract of Xenopus laevis stomach. The primary structures of the peptides indicate a close phylogenetic relationship between X. gilli and X. laevis but only magainin-1, PGLa and one CPF peptide are identical in both species. Consistent with previous data, the CPF peptides show the greatest antimicrobial potency but are hemolytic. There are appreciable differences in the expression of host-defense peptide genes in frogs from the population of animals sampled near Kleinmond as peptides corresponding to magainin-G2, XPF-G1, XPF-G2, and four CPF peptides, present in secretions from the Cape Peninsula frogs, were not identified in the skin secretions from Kleinmond frogs. Conversely, PGLa-G3, XPF-G3, and three CPF peptides were identified in the Kleinmond frogs but not in the Cape Peninsula animals. The data support the conclusion from morphometric analyses and comparisons of the nucleotide sequences of mitochondrial genes that the disjunct populations of X. gilli have undergone appreciable genetic, morphological, and phenotypic divergence.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Proteínas de Xenopus/farmacologia , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/isolamento & purificação , Peptídeos Catiônicos Antimicrobianos/metabolismo , Eritrócitos/efeitos dos fármacos , Hemólise , Humanos , Dose Letal Mediana , Testes de Sensibilidade Microbiana , Dados de Sequência Molecular , Pele/metabolismo , Xenopus , Proteínas de Xenopus/isolamento & purificação , Proteínas de Xenopus/metabolismo
11.
PLoS One ; 9(8): e104628, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25171066

RESUMO

Islands provide exciting opportunities for exploring ecological and evolutionary mechanisms. The oceanic island of São Tomé in the Gulf of Guinea exhibits high diversity of fauna including the endemic caecilian amphibian, Schistometopum thomense. Variation in pigmentation, morphology and size of this taxon over its c. 45 km island range is extreme, motivating a number of taxonomic, ecological, and evolutionary hypotheses to explain the observed diversity. We conducted a population genetic study of S. thomense using partial sequences of two mitochondrial DNA genes (ND4 and 16S), together with morphological examination, to address competing hypotheses of taxonomic or clinal variation. Using Bayesian phylogenetic analysis and Spatial Analysis of Molecular Variance, we found evidence of four geographic clades, whose range and approximated age (c. 253 Kya-27 Kya) are consistent with the spread and age of recent volcanic flows. These clades explained 90% of variation in ND4 (φCT = 0.892), and diverged by 4.3% minimum pairwise distance at the deepest node. Most notably, using Mismatch Distributions and Mantel Tests, we identified a zone of population admixture that dissected the island. In the northern clade, we found evidence of recent population expansion (Fu's Fs = -13.08 and Tajima's D = -1.80) and limited dispersal (Mantel correlation coefficient = 0.36, p = 0.01). Color assignment to clades was not absolute. Paired with multinomial regression of chromatic data, our analyses suggested that the genetic groups and a latitudinal gradient together describe variation in color of S. thomense. We propose that volcanism and limited dispersal ability are the likely proximal causes of the observed genetic structure. This is the first population genetic study of any caecilian and demonstrates that these animals have deep genetic divisions over very small areas in accordance with previous speculations of low dispersal abilities.


Assuntos
Anfíbios/genética , Variação Genética , África , Anfíbios/anatomia & histologia , Anfíbios/classificação , Anfíbios/fisiologia , Animais , Teorema de Bayes , DNA Mitocondrial/genética , Evolução Molecular , Genética Populacional , Haplótipos , Ilhas , Filogenia , Filogeografia , Pigmentação , Análise de Sequência de DNA
12.
PLoS One ; 9(1): e86846, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24475183

RESUMO

Phenotypic performance in different environments is central to understanding the evolutionary and ecological processes that drive adaptive divergence and, ultimately, speciation. Because habitat structure can affect an animal's foraging behaviour, anti-predator defences, and communication behaviour, it can influence both natural and sexual selection pressures. These selective pressures, in turn, act upon morphological traits to maximize an animal's performance. For performance traits involved in both social and ecological activities, such as bite force, natural and sexual selection often interact in complex ways, providing an opportunity to understand the adaptive significance of morphological variation with respect to habitat. Dwarf chameleons within the Bradypodion melanocephalum-Bradypodion thamnobates species complex have multiple phenotypic forms, each with a specific head morphology that could reflect its use of either open- or closed-canopy habitats. To determine whether these morphological differences represent adaptations to their habitats, we tested for differences in both absolute and relative bite performance. Only absolute differences were found between forms, with the closed-canopy forms biting harder than their open-canopy counterparts. In contrast, sexual dimorphism was found for both absolute and relative bite force, but the relative differences were limited to the closed-canopy forms. These results indicate that both natural and sexual selection are acting within both habitat types, but to varying degrees. Sexual selection seems to be the predominant force within the closed-canopy habitats, which are more protected from aerial predators, enabling chameleons to invest more in ornamentation for communication. In contrast, natural selection is likely to be the predominant force in the open-canopy habitats, inhibiting the development of conspicuous secondary sexual characteristics and, ultimately, enforcing their overall diminutive body size and constraining performance.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Força de Mordida , Ecossistema , Lagartos/anatomia & histologia , Lagartos/fisiologia , Caracteres Sexuais , Análise de Variância , Animais , Pesos e Medidas Corporais , Feminino , Masculino , Seleção Genética , África do Sul
13.
PeerJ ; 1: e166, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24109551

RESUMO

Low-lying areas of the Cape at Africa's south-westernmost tip have undergone dramatic marine-remodelling, with regular changes in sea-level following glacial cycles. Species for which marine barriers are impenetrable underwent concomitant radical distribution changes which may account for current range disjunctions. The Cape platanna, Xenopus gilli, is a frog distributed in only three disjunt areas within low-lying regions of the southwestern Cape. We determined the relationship between frogs from these three disjunct areas, by using a combination of morphometric analysis and mtDNA (ND2 and 16S fragments) sequences of 130 frogs from eight ponds. Coalescent analyses on molecular data dated the divergence in two major clades to around 4.6 Mya, a period during which major uplifting on the eastern side of the subcontinent caused climate changes throughout southern Africa. Principal components analysis showed significant morphometric differences between each clade on head and limb measurements. Consistent differences in ventral colouration and patterning were also observed. We report on increased levels of hybridisation with X. laevis throughout the range of X. gilli, which reaches at least 27% hybrids in some ponds. Urgent conservation actions are required to control habitat loss from alien invasive vegetation, and prevent introgression with the domestic-exotic, X. laevis.

14.
J Exp Biol ; 216(Pt 20): 3828-36, 2013 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-23868845

RESUMO

Temperature is an extrinsic factor that influences reptile behavior because of its impact on reptile physiology. Understanding the impact of temperature on performance traits is important as it may affect the ecology and fitness of ectothermic animals such as reptiles. Here, we examined the temperature dependence of performance in two species of South African dwarf chameleon (Bradypodion): one adapted to a semi-arid environment and one to a mesic environment. Ecologically relevant performance traits were tested at different temperatures to evaluate their thermal dependence, and temperature-performance breadths for 80% and 90% of each performance trait were calculated. Our results show distinct differences in the thermal dependence of speed- versus force-related performance traits. Moreover, our results show that the semi-arid species is better adapted to higher temperatures and as such has a better chance of coping with the predicted increases in environmental temperature. The mesic area-adapted species seems to be more sensitive to an increase in temperature and could therefore potentially be threatened by the predicted future climate change. However, further studies investigating the potential for acclimation in chameleons are needed to better understand how animals may respond to future climate change.


Assuntos
Lagartos/fisiologia , Temperatura , Animais , Força de Mordida , Feminino , Masculino , África do Sul , Especificidade da Espécie
15.
J Exp Biol ; 216(Pt 6): 1025-30, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23197094

RESUMO

Chameleons are highly specialized and mostly arboreal lizards characterized by a suite of derived characters. The grasping feet and tail are thought to be related to the arboreal lifestyle of chameleons, yet specializations for grasping are thought to exhibit a trade-off with running ability. Indeed, previous studies have demonstrated a trade-off between running and clinging performance, with faster species being poorer clingers. Here we investigate the presence of trade-offs by measuring running and grasping performance in four species of chameleon belonging to two different clades (Chamaeleo and Bradypodion). Within each clade we selected a largely terrestrial species and a more arboreal species to test whether morphology and performance are related to habitat use. Our results show that habitat drives the evolution of morphology and performance but that some of these effects are specific to each clade. Terrestrial species in both clades show poorer grasping performance than more arboreal species and have smaller hands. Moreover, hand size best predicts gripping performance, suggesting that habitat use drives the evolution of hand morphology through its effects on performance. Arboreal species also had longer tails and better tail gripping performance. No differences in sprint speed were observed between the two Chamaeleo species. Within Bradypodion, differences in sprint speed were significant after correcting for body size, yet the arboreal species were both better sprinters and had greater clinging strength. These results suggest that previously documented trade-offs may have been caused by differences between clades (i.e. a phylogenetic effect) rather than by design conflicts between running and gripping per se.


Assuntos
Adaptação Biológica/fisiologia , Evolução Biológica , Ecossistema , Força da Mão/fisiologia , Lagartos/fisiologia , Corrida/fisiologia , Cauda/fisiologia , Análise de Variância , Animais , Pesos e Medidas Corporais , Membro Anterior/anatomia & histologia , Lagartos/anatomia & histologia , África do Sul , Especificidade da Espécie , Cauda/anatomia & histologia
16.
Zootaxa ; 3669: 101-14, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-26312325

RESUMO

Molecular phylogenetic analyses of southern African lacertid lizards (Eremiadini) using mitochondrial and nuclear markers revealed two examples of generic assignments incompatible with monophyletic clades. Australolacerta Arnold 1989, a genus endemic to South Africa and to which two isolated species have been referred, is paraphyletic at the generic level. In addition, the species Ichnotropis squamulosa Peters 1854 was found to be embedded within the genus Meroles. To resolve the paraphyly in Australolacerta we erect a new genus, Vhembelacerta Edwards, Branch, Herrel, Vanhooydonck, Measey, & Tolley, gen. nov., to accommodate Lacerta rupicola FitzSimons 1933. To maintain a monophyletic Ichnotropis Peters 1854, Ichnotropis squamulosa Peters 1854 is transferred to Meroles Gray 1838, now named Meroles squamulosus comb. nov. Where necessary the genera affected by these actions are re-characterized.


Assuntos
Distribuição Animal , Lagartos/classificação , Lagartos/genética , Filogenia , Animais , Lagartos/fisiologia , África do Sul , Especificidade da Espécie
17.
PLoS One ; 7(12): e51636, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23251601

RESUMO

Convergent evolution can explain similarity in morphology between species, due to selection on a fitness-enhancing phenotype in response to local environmental conditions. As selective pressures on body morphology may be strong, these have confounded our understanding of the evolutionary relationships between species. Within the speciose African radiation of lacertid lizards (Eremiadini), some species occupy a narrow habitat range (e.g. open habitat, cluttered habitat, strictly rupicolous, or strictly psammophilic), which may exert strong selective pressures on lizard body morphology. Here we show that the overall body plan is unrelated to shared ancestry in the African radiation of Eremiadini, but is instead coupled to habitat use. Comprehensive Bayesian and likelihood phylogenies using multiple representatives from all genera (2 nuclear, 2 mitochondrial markers) show that morphologically convergent species thought to represent sister taxa within the same genus are distantly related evolutionary lineages (Ichnotropis squamulosa and Ichnotropis spp.; Australolacerta rupicola and A. australis). Hierarchical clustering and multivariate analysis of morphological characters suggest that body, and head, width and height (stockiness), all of which are ecologically relevant with respect to movement through habitat, are similar between the genetically distant species. Our data show that convergence in morphology, due to adaptation to similar environments, has confounded the assignment of species leading to misidentification of the taxonomic position of I. squamulosa and the Australolacerta species.


Assuntos
Ecossistema , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , Análise de Variância , Animais , Análise por Conglomerados , Fenótipo , Análise de Componente Principal , África do Sul
18.
J Exp Zool A Ecol Genet Physiol ; 317(9): 533-9, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22927194

RESUMO

Caecilians are limbless amphibians that have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Observations on feeding behavior are rare and restricted to above-ground feeding in laboratory conditions. Here we report data on feeding in tunnels using both external video and X-ray recordings of caecilians feeding on invertebrate prey. Our data show feeding kinematics similar to those previously reported, including the pronounced neck bending observed during above-ground feeding. Our data illustrate, however, that caecilians may be much faster than previously suspected, with lunge speeds of up to 7 cm sec(-1). Although gape cycles are often slow (0.67 ± 0.29 sec), rapid jaw closure is observed during prey capture, with cycle times and jaw movement velocities similar to those observed in other terrestrial tetrapods. Finally, our data suggest that gape angles may be large (64.8 ± 18°) and that gape profiles are variable, often lacking distinct slow and fast opening and closing phases. These data illustrate the importance of recording naturalistic feeding behavior and shed light on how these animals are capable of capturing and processing prey in constrained underground environments. Additional data on species with divergent cranial morphologies would be needed to better understand the co-evolution between feeding, burrowing, and cranial design in caecilians.


Assuntos
Anfíbios/fisiologia , Ecossistema , Comportamento Alimentar/fisiologia , Arcada Osseodentária/fisiologia , Animais , Fenômenos Biomecânicos , Gravação em Vídeo , Raios X
19.
PLoS One ; 6(10): e26606, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22053198

RESUMO

BACKGROUND: The Eastern Arc Mountains (EAM) is an example of naturally fragmented tropical forests, which contain one of the highest known concentrations of endemic plants and vertebrates. Numerous paleo-climatic studies have not provided direct evidence for ancient presence of Pleistocene forests, particularly in the regions in which savannah presently occurs. Knowledge of the last period when forests connected EAM would provide a sound basis for hypothesis testing of vicariance and dispersal models of speciation. Dated phylogenies have revealed complex patterns throughout EAM, so we investigated divergence times of forest fauna on four montane isolates in close proximity to determine whether forest break-up was most likely to have been simultaneous or sequential, using population genetics of a forest restricted arboreal chameleon, Kinyongia boehmei. METHODOLOGY/PRINCIPAL FINDINGS: We used mitochondrial and nuclear genetic sequence data and mutation rates from a fossil-calibrated phylogeny to estimate divergence times between montane isolates using a coalescent approach. We found that chameleons on all mountains are most likely to have diverged sequentially within the Pleistocene from 0.93-0.59 Ma (95% HPD 0.22-1.84 Ma). In addition, post-hoc tests on chameleons on the largest montane isolate suggest a population expansion ∼182 Ka. CONCLUSIONS/SIGNIFICANCE: Sequential divergence is most likely to have occurred after the last of three wet periods within the arid Plio-Pleistocene era, but was not correlated with inter-montane distance. We speculate that forest connection persisted due to riparian corridors regardless of proximity, highlighting their importance in the region's historic dispersal events. The population expansion coincides with nearby volcanic activity, which may also explain the relative paucity of the Taita's endemic fauna. Our study shows that forest chameleons are an apposite group to track forest fragmentation, with the inference that forest extended between some EAM during the Pleistocene 1.1-0.9 Ma.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Lagartos/genética , Árvores/crescimento & desenvolvimento , África Oriental , Animais , Variação Genética , Geografia , Haplótipos/genética , Modelos Biológicos , Dados de Sequência Molecular , Nucleotídeos/genética , Filogenia , Fatores de Tempo
20.
J Exp Zool A Ecol Genet Physiol ; 313(5): 301-9, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20301183

RESUMO

Caecilians are limbless amphibians that have radiated extensively in the tropics, and have evolved distinct cranial and postcranial specializations associated with a burrowing lifestyle. Some species are recognized as being surface active, whereas others are dedicated burrowers. Previous authors have demonstrated that some caecilians use a hydrostatic mechanism to generate burrowing forces which is dependent on the existence of skin-vertebral independence. It has been hypothesized that skin-vertebral independence may be lost in extremely elongated species, thus affecting their ability to burrow. Here, we use X-ray video to study the kinematics of locomotion in five species of caecilian differing in their degree of body elongation. Animals were filmed moving in or across different substrates imposing different functional demands on the locomotor system. Our data demonstrate that all species have the ability to perform internal concertina locomotion, but indicate differences between species in the kinematics of locomotion with more elongate species showing a smaller degree of skin-vertebral independence. In all species, locomotion was dependent on the substrate and species switched from using lateral undulation on the surface substrates to the use of whole body or internal concertina in wide and narrow tunnels, respectively. When burrowing in soil, all species used a combination of whole-body and internal concertina locomotion. Additional studies on the ability of different species to generate forces are needed to test whether the reduced skin-vertebral independence in elongate forms has resulted in a decreased ability to generate burrows.


Assuntos
Anfíbios/anatomia & histologia , Anfíbios/fisiologia , Locomoção/fisiologia , Anfíbios/classificação , Animais , Fenômenos Biomecânicos/fisiologia , Pesos e Medidas Corporais , Filogenia , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...