Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Arthroplasty ; 36(7): 2386-2392, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33602585

RESUMO

BACKGROUND: One of the most common kinematic abnormalities reported for posterior-stabilized (PS) total knee arthroplasty (TKA) design is paradoxical anterior sliding during early and mid-flexion. PS TKAs have been designed such that the cam-post mechanism does not engage until later in flexion, making these implants vulnerable to anterior sliding during early and mid-flexion. The objective of this study is to investigate the biomechanical effect of increasing bearing conformity on a PS TKA. METHODS: Using a validated computational model of the knee joint, the sagittal conformity of the medial plateau of a PS TKA design was altered. Three scenarios were created and evaluated for mechanics: (1) baseline conformity, (2) increased conformity, and (3) decreased conformity. RESULTS: From full extension to approximately 70° of knee flexion, the medial condyle demonstrated minimal anterior sliding for the increased medial conformity design but revealed anterior sliding of 2 and 4 mm for the baseline and decreased conformity designs, respectively. After cam-post engagement, the medial condyle consistently rolled back for all 3 designs. The lateral condyle experienced consistent rollback throughout the entire flexion range for all 3 designs. However, femorotibial contact force was higher for the increased conformity design, peaking at 3.13 times body weight (×BW) compared to 3.0 × BW contact force for other 2 designs. CONCLUSION: Increasing medial conformity of the bearing insert appears to reduce mid-flexion sliding for PS TKA designs, although this comes at the expense of increased femorotibial forces. This could be due to kinematic conflicts that may be introduced with highly constraining designs.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Fenômenos Biomecânicos , Humanos , Articulação do Joelho/cirurgia , Desenho de Prótese , Amplitude de Movimento Articular
2.
J Arthroplasty ; 36(7): 2379-2385, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33376035

RESUMO

BACKGROUND: It has been hypothesized that increasing posterior tibial slope can influence condylar rollback and play a role in increasing knee flexion. However, the effects of tibial slope on knee kinematics are not well studied. The objective of this study is to assess the effects of tibial slope on femorotibial kinematics and kinetics for a posterior cruciate retaining total knee arthroplasty design. METHODS: A validated forward solution model of the knee was implemented to predict the femorotibial biomechanics of a posterior cruciate retaining total knee arthroplasty with varied posterior slopes of 0°-8° at 2° intervals. All analyses were conducted on a weight-bearing deep knee bend activity. RESULTS: Increasing the tibial slope shifted the femoral component posteriorly at full extension but decreased the overall femoral rollback throughout flexion. With no tibial slope, the lateral condyle contacted the polyethylene 6 mm posterior of the midline, but as the slope increased to 8°, the femur shifted an extra 5 mm, to 11 mm posterior of the tibial midline. Similar shifts were observed for the medial condyle, ranging from 7 mm posterior to 13 mm posterior, respectively. Increasing posterior slope decreased the posterior cruciate ligament tension and femorotibial contact force. CONCLUSION: The results of this study revealed that, although increasing the tibial slope shifted the femur posteriorly at full extension and maximum flexion, it reduced the amount of femoral rollback. Despite the lack of rollback, a more posterior location of condyles suggests lower chances of bearing impingement of the posterior femur and may explain why increasing slope may lead to higher knee flexion.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Ligamento Cruzado Posterior , Fenômenos Biomecânicos , Humanos , Cinética , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Ligamento Cruzado Posterior/cirurgia , Amplitude de Movimento Articular , Tíbia/cirurgia
3.
J Arthroplasty ; 35(11): 3289-3299, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32631725

RESUMO

BACKGROUND: Mathematical modeling is among the most common computational tools for assessing total knee arthroplasty (TKA) mechanics of different implant designs and surgical alignments. The main objective of this study is to describe and validate a forward solution mathematical of the knee joint to investigate the effects of TKA design and surgical conditions on TKA outcomes. METHODS: A 12-degree of freedom mathematical model of the human knee was developed. This model includes the whole lower extremity of the human body and comprises major muscles and ligaments at the knee joint. The muscle forces are computed using a proportional-integral-derivative controller, and the joint forces are calculated using a contact detection algorithm. The model was validated using telemetric implants and fluoroscopy, and the sensitivity analyses were performed to determine how sensitive the model is to both implant design, which was analyzed by varying medial conformity of the polyethylene, and surgical alignment, which was analyzed by varying the posterior tibial tilt. RESULTS: The model predicted the tibiofemoral joint forces with an average accuracy of 0.14× body weight (BW), 0.13× BW, and 0.17× BW root-mean-square errors for lateral, medial, and total tibiofemoral contact forces. With fluoroscopy, the kinematics were validated with an average accuracy of 0.44 mm, 0.62 mm, and 0.77 root-mean-square errors for lateral anteroposterior position, medial anteroposterior position, and axial rotation, respectively. Increasing medial conformity resulted in reducing the paradoxical anterior sliding midflexion. Furthermore, increasing posterior tibial slopes shifted the femoral contact point more posterior on the bearing and reduced the tension in the posterior cruciate ligament. CONCLUSION: A forward solution dynamics model of the knee joint was developed and validated using telemetry devices and fluoroscopy data. The results of this study suggest that a validated mathematical model can be used to predict the effects of component design and surgical conditions on TKA outcomes.


Assuntos
Artroplastia do Joelho , Prótese do Joelho , Fenômenos Biomecânicos , Fêmur/cirurgia , Humanos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/cirurgia , Modelos Teóricos , Amplitude de Movimento Articular , Tíbia/cirurgia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...