Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Animals (Basel) ; 13(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37370413

RESUMO

Chemical communication in mammals is ensured by exchanging chemical signals through the vomeronasal organ (VNO) and its ability to detect pheromones. The alteration of this organ has been proven to impact animal life, participating in the onset of aggressive behaviors in social groups. To date, few studies have highlighted the possible causes leading to these alterations, and the farming environment has not been investigated, even though irritant substances such as ammonia are known to induce serious damage in the respiratory tract. The goal of this study was to investigate the environmental impact on the VNO structure. Thirty mice were split into three groups, one housed in normal laboratory conditions and the other two in confined environments, with or without the release of litter ammonia. VNOs were analyzed using histology and immunohistochemistry to evaluate the effect of different environments on their condition. Both restricted conditions induced VNO alterations (p = 0.0311), soft-tissue alteration (p = 0.0480), and nonsensory epithelium inflammation (p = 0.0024). There was glycogen accumulation (p < 0.0001), the olfactory marker protein was underexpressed (p < 0.0001), and Gαi2 positivity remained unchanged while Gαo expression was upregulated in confined conditions. VNO conditions seemed to worsen with ammonia, even if not always significantly. These murine model results suggest that the housing environment can strongly impact VNO conditions, providing novel insights for improving indoor farming systems.

2.
Front Vet Sci ; 9: 936838, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172609

RESUMO

Chemical communication is widely used by animals to exchange information in their environment, through the emission and detection of semiochemicals to maintain social organization and hierarchical rules in groups. The vomeronasal organ (VNO) is one of the main detectors of these messages, and its inflammation has been linked to behavioral changes because it potentially prevents molecule detection and, consequently, the translation of the signal into action. Our previous study highlighted the link between the intensity of vomeronasal sensory epithelium (VNSE) inflammation, probably induced by farm contaminant exposure, and intraspecific aggression in pigs. The aim of this study was to evaluate the cellular and molecular changes that occur during vomeronasalitis in 76 vomeronasal sensorial epithelia from 38 intensive-farmed pigs. Histology was used to evaluate the condition of each VNO and classify inflammation as healthy, weak, moderate, or strong. These data were compared to the thickness of the sensorial epithelium and the number of type 1 vomeronasal receptor cells using anti-Gαi2 protein immunohistochemistry (IHC) and analysis. The presence of odorant-binding proteins (OBPs) in the areas surrounding the VNO was also analyzed by IHC and compared to inflammation intensity since its role as a molecule transporter to sensory neurons has been well-established. Of the 76 samples, 13 (17%) were healthy, 31 (41%) presented with weak inflammation, and 32 (42%) presented with moderate inflammation. No severe inflammation was observed. Epithelial thickness and the number of Gαi2+ cells were inversely correlated with inflammation intensity (Kruskal-Wallis and ANOVA tests, p < 0.0001), while OBP expression in areas around the VNO was increased in inflamed VNO (Kruskal-Wallis test, p = 0.0094), regardless of intensity. This study showed that inflammation was associated with a reduction in the thickness of the sensory epithelium and Gαi2+ cell number, suggesting that this condition can induce different degrees of neuronal loss. This finding could explain how vomeronasalitis may prevent the correct functioning of chemical communication, leading to social conflict with a potential negative impact on welfare, which is one of the most important challenges in pig farming.

3.
Animals (Basel) ; 12(10)2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35625130

RESUMO

The olfactory mucosa contains olfactory ecto-mesenchymal stem cells (OE-MSCs) which show stemness features, multipotency capabilities, and have a therapeutic potential. The OE-MSCs have already been collected and isolated from various mammals. The aim of this study was to evaluate the feasibility of collecting, purifying and amplifying OE-MSCs from the cat nasal cavity. Four cats were included in the study. Biopsies of olfactory mucosa were performed on anesthetized animals. Then, the olfactory OE-MSCs were isolated, and their stemness features as well as their mesodermal differentiation capabilities were characterized. Olfactory mucosa biopsies were successfully performed in all subjects. From these biopsies, cellular populations were rapidly generated, presenting various stemness features, such as a fibroblast-like morphology, nestin and MAP2 expression, and sphere and colony formation. These cells could differentiate into neural and mesodermal lineages. This report shows for the first time that the isolation of OE-MSCs from cat olfactory mucosa is possible. These cells showed stemness features and multilineage differentiation capabilities, indicating they may be a promising tool for autologous grafts and feline regenerative medicine.

4.
Animals (Basel) ; 11(5)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922332

RESUMO

The vomeronasal organ (VNO) plays a crucial role in animal behavior since it is responsible for semiochemical detection and, thus, for intra- and interspecific chemical communication, through the vomeronasal sensory epithelium (VNSE), composed of bipolar sensory neurons. This study aimed to explore a well-recognized cause of neuronal degeneration, only rarely explored in this organ: aging. Murine VNOs were evaluated according to 3 age groups (3, 10, and 24 months) by histology to assess VNSE changes such as cellular degeneration or glycogen accumulation and by immunohistochemistry to explore nervous configuration, proliferation capability, and apoptosis with the expression of olfactory marker protein (OMP), Gαi2, Gαo, Ki-67, and cleaved caspase-3 proteins. These markers were quantified as percentages of positive signal in the VNSE and statistical analyses were performed. Cellular degeneration increased with age (p < 0.0001) as well as glycogen accumulation (p < 0.0001), Gαo expression (p < 0.0001), and the number of cleaved-caspase3 positive cells (p = 0.0425), while OMP and Gαi2 expressions decreased with age (p = 0.0436 and p < 0.0001, respectively). Ki67-positive cells were reduced, even if this difference was not statistically significant (p = 0.9105). Due to the crucial role of VNO in animal life, this study opens the door to interesting perspectives about chemical communication efficiency in aging animals.

5.
Poult Sci ; 99(12): 6300-6306, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33248545

RESUMO

Stress is an important cause of illness and mortality in chick production. Stressors such as manipulation, absence of maternal care, transport, and housing can lead to welfare issues, immunodepression, and decreased productivity. The mother hen uropygial secretion analogue (MHUSA), a synthetic analog of a maternal semiochemical secretion, has been proven to protect chicks and broilers against stress, significantly reducing the heterophil-to-lymphocyte ratio. The aim of the present study was to test the effects of the MHUSA on chicks' stress when single-sprayed on their fluff at the age of 1 d. Two-hundred eighty ROSS 308 chicks were included in the study. At day 1, each chick received a spray of 200 µL of a 2% MHUSA aqueous solution (140 chicks) or the same amount of the excipient (control group, 140 chicks), and then chicks were housed in 2 separate rooms. To assess the persistence of the MHUSA after this single application, fluff was sampled from 10 chicks every day for 7 d and at day 13 and 19, weighed, placed in dichloromethane, and analyzed by gas chromatography. Blood smears and the bursa of Fabricius were collected every 3 d from 10 chicks of each group for 36 d to assess the heterophil-to-lymphocyte ratio and the bursa weight-to-BW ratio, respectively. Gas chromatography analysis showed that the MHUSA was present on chick fluff until day 5. The statistical analysis revealed that the heterophil-to-lymphocyte ratio was lower in the MHUSA group at day 4, 7, and 9 (P < 0.0001 for day 4 and 7; P = 0.0377 for day 9). The bursa weight-to-BW ratio was significantly higher in the MHUSA group than in the control group from day 4 until day 29. These results confirm the beneficial effects of the MHUSA on chicks' adaptation to the new environment and on bursa of Fabricius development, suggesting its potential role in improving chicks' immune response.


Assuntos
Secreções Corporais , Bolsa de Fabricius , Galinhas , Glândulas Exócrinas , Óleos , Animais , Animais Recém-Nascidos , Contagem de Células Sanguíneas , Células Sanguíneas/efeitos dos fármacos , Secreções Corporais/química , Peso Corporal/efeitos dos fármacos , Bolsa de Fabricius/efeitos dos fármacos , Bolsa de Fabricius/crescimento & desenvolvimento , Galinhas/crescimento & desenvolvimento , Galinhas/imunologia , Glândulas Exócrinas/química , Feminino , Linfócitos/efeitos dos fármacos , Óleos/química , Óleos/farmacologia
6.
J Clin Invest ; 124(12): 5337-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25384217

RESUMO

It has recently been demonstrated that memory B cells can reenter and reengage germinal center (GC) reactions, opening the possibility that multi-hit lymphomagenesis gradually occurs throughout life during successive immunological challenges. Here, we investigated this scenario in follicular lymphoma (FL), an indolent GC-derived malignancy. We developed a mouse model that recapitulates the FL hallmark t(14;18) translocation, which results in constitutive activation of antiapoptotic protein B cell lymphoma 2 (BCL2) in a subset of B cells, and applied a combination of molecular and immunofluorescence approaches to track normal and t(14;18)(+) memory B cells in human and BCL2-overexpressing B cells in murine lymphoid tissues. BCL2-overexpressing B cells required multiple GC transits before acquiring FL-associated developmental arrest and presenting as GC B cells with constitutive activation-induced cytidine deaminase (AID) mutator activity. Moreover, multiple reentries into the GC were necessary for the progression to advanced precursor stages of FL. Together, our results demonstrate that protracted subversion of immune dynamics contributes to early dissemination and progression of t(14;18)(+) precursors and shapes the systemic presentation of FL patients.


Assuntos
Subpopulações de Linfócitos B/metabolismo , Movimento Celular , Regulação Neoplásica da Expressão Gênica , Linfoma Folicular/metabolismo , Neoplasias Experimentais/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/biossíntese , Animais , Subpopulações de Linfócitos B/patologia , Citidina Desaminase/genética , Citidina Desaminase/metabolismo , Feminino , Humanos , Linfoma Folicular/genética , Linfoma Folicular/patologia , Masculino , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/patologia , Proteínas Proto-Oncogênicas c-bcl-2/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...