Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
iScience ; 27(1): 108628, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38188526

RESUMO

Olanzapine is a second-generation antipsychotic (AP) used in the management of schizophrenia. Although effective at reducing psychoses, APs cause rapid hyperglycemia, insulin resistance, and dyslipidemia, an effect mediated in part by glucagon. We tested if amylin, a hormone that reduces glucagon, or the amylin receptor agonist pramlintide would protect against acute olanzapine-induced impairments in glucose and lipid homeostasis alone or in combination with other glucose-lowering agents such as liraglutide. We demonstrated that pramlintide lowered olanzapine-induced increases in glucagon:insulin ratio with a trend to protect against excursions in blood glucose. There was an additive effect of pramlintide and liraglutide in protecting against olanzapine-induced hyperglycemia, which was mirrored by reductions in glucagon and attenuated markers of dyslipidemia. Our findings provide evidence that pramlintide, although moderately protective against some aspects of olanzapine-induced metabolic dysfunction, can be used to enhance the protective effects of other interventions against acute olanzapine-induced metabolic dysfunction.

2.
Biomed Pharmacother ; 168: 115671, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839107

RESUMO

Antipsychotic medications are used in the management of schizophrenia and a growing number of off-label conditions. While effective at reducing psychoses, these drugs possess noted metabolic side effects including weight gain, liver lipid accumulation and disturbances in glucose and lipid metabolism. To counter the side effects of antipsychotics standard of care has typically included metformin. Unfortunately, metformin does not protect against antipsychotic induced metabolic disturbances in all patients and thus additional treatment approaches are needed. One potential candidate could be salsalate, the prodrug of salicylate, which acts synergistically with metformin to improve indices of glucose and lipid metabolism in obese mice. The purpose of the current investigation was to compare the effects of salsalate, metformin and a combination of both drugs, on weight gain and indices of metabolic health in female mice treated with the antipsychotic, olanzapine. Herein we demonstrate that salsalate was equally as effective as metformin in protecting against olanzapine induced weight gain and liver lipid accumulation with no additional benefit of combining both drugs. Conversely, metformin treatment, either alone or in combination with salsalate, improved indices of glucose metabolism and increased energy expenditure in olanzapine treated mice. Collectively, our findings provide evidence that dual therapy with both metformin and salsalate could be an efficacious approach with which to dampen the metabolic consequences of antipsychotic medications.


Assuntos
Antipsicóticos , Metformina , Humanos , Feminino , Camundongos , Animais , Olanzapina , Antipsicóticos/uso terapêutico , Metformina/farmacologia , Metformina/uso terapêutico , Salicilatos/farmacologia , Aumento de Peso , Lipídeos , Glucose , Benzodiazepinas
3.
Nutr Res ; 119: 65-75, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37757641

RESUMO

Increases in postprandial lipids are linked to the development of cardiometabolic and fatty liver disease. Prior work has suggested that dairy possesses beneficial cardiometabolic effects and thus the aim of the current investigation was to test the hypotheses that the habitual consumption of dairy, in the form of skim milk powder (SMP), would protect against increases in circulating lipids and liver lipid accumulation following an oral fat challenge in rats. Male rats were fed either a semipurified low-fat control diet with casein or a diet with an equivalent amount of protein (∼13% kcal) provided through skim milk powder (SMP) for 6 weeks (n = 40/group). Rats were then given an oral gavage of palm oil (5 mL/kg body weight) or an equivalent volume of water, and serum and liver were harvested 90 minutes or 4 hours after. Rats fed the SMP diet gained less weight than controls but there were no differences in glucose tolerance between groups. The fat gavage increased serum lipids in both diet groups, whereas there was a main effect of the fat challenge to increase, and the SMP diet, to decrease liver triacylglycerol accumulation. The percentage of saturated and monounsaturated fatty acids and the protein content/activity of lipogenic enzymes were reduced in livers from SMP-fed rats, whereas the percentage of polyunsaturated fatty acids was increased. In summary, we provide evidence that SMP consumption, although not protecting against postprandial lipemia, markedly attenuates triacylglycerol accumulation and the relative amount of saturated and monounsaturated fatty acids in the liver.


Assuntos
Doenças Cardiovasculares , Hiperlipidemias , Ratos , Masculino , Animais , Triglicerídeos , Leite , Lipídeos , Pós , Dieta , Fígado/metabolismo , Hiperlipidemias/etiologia , Ácidos Graxos Monoinsaturados , Doenças Cardiovasculares/metabolismo , Ácidos Graxos/metabolismo , Gorduras na Dieta/metabolismo
4.
Front Pharmacol ; 14: 1127634, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36937886

RESUMO

Olanzapine is a second-generation antipsychotic (SGA) used in the treatment of schizophrenia and several on- and off-label conditions. While effective in reducing psychoses, acute olanzapine treatment causes rapid hyperglycemia, insulin resistance, and dyslipidemia and these perturbations are linked to an increased risk of developing cardiometabolic disease. Pharmacological agonists of the glucagon-like peptide-1 (GLP1) receptor have been shown to offset weight-gain associated with chronic SGA administration and mitigate the acute metabolic side effects of SGAs. The purpose of this study was to determine if increasing endogenous GLP1 is sufficient to protect against acute olanzapine-induced impairments in glucose and lipid homeostasis. Male C57BL/6J mice were treated with olanzapine, in the absence or presence of an oral glucose tolerance test (OGTT), and a combination of compounds to increase endogenous GLP1. These include the non-nutritive sweetener allulose which acts to induce GLP1 secretion but not other incretins, the DPPiv inhibitor sitagliptin which prevents degradation of active GLP1, and an SSTR5 antagonist which relieves inhibition on GLP1 secretion. We hypothesized that this cocktail of agents would increase circulating GLP1 to supraphysiological concentrations and would protect against olanzapine-induced perturbations in glucose and lipid homeostasis. We found that 'triple treatment' increased both active and total GLP1 and protected against olanzapine-induced perturbations in lipid and glucose metabolism under glucose stimulated conditions and this was paralleled by an attenuation in the olanzapine induced increase in the glucagon:insulin ratio. Our findings provide evidence that pharmacological approaches to increase endogenous GLP1 could be a useful adjunct approach to reduce acute olanzapine-induced perturbations in lipid and glucose metabolism.

5.
Obesity (Silver Spring) ; 31(2): 454-465, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36617436

RESUMO

OBJECTIVE: In contrast to what is seen clinically, male mice are resistant to antipsychotic-induced obesity. This is problematic as preclinical studies examining mechanisms of antipsychotic-induced metabolic dysfunction might be relevant to only half the population. This study sought to determine whether housing mice at thermoneutrality and under conditions of preexisting obesity, steps that have not been previously considered, would uncover a greater obesogenic effect of the antipsychotic olanzapine (OLZ). METHODS: C57BL6/J mice were fed a low- or high-fat diet (HFD) for 4 weeks and then switched to a control HFD or an HFD supplemented with OLZ for 6 weeks. RESULTS: Irrespective of obesity, OLZ treatment attenuated weight gain and increased energy expenditure in male mice. In females, OLZ increased food intake and potentiated weight gain in mice with preexisting obesity. CONCLUSIONS: Despite taking steps to increase clinical translatability, this study did not unmask an obesogenic effect of OLZ in male mice. Interestingly, prior studies in female mice could have been underestimating the metabolic consequences of OLZ by not considering the importance of preexisting obesity. Uncovering the mechanisms conferring resistance to weight gain in males may provide clues for approaches to counter the metabolic side effects of antipsychotics clinically.


Assuntos
Antipsicóticos , Masculino , Feminino , Camundongos , Animais , Olanzapina , Antipsicóticos/efeitos adversos , Habitação , Benzodiazepinas/efeitos adversos , Obesidade/metabolismo , Aumento de Peso
6.
J Physiol ; 600(21): 4677-4693, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36083198

RESUMO

Ketogenic diets (KDs) are a popular tool used for weight management. Studies in mice have demonstrated that KDs reduce food intake, increase energy expenditure and cause weight loss. These studies were completed at room temperature, a condition below the animal's thermal neutral zone which induces thermal stress. As energy intake and expenditure are sensitive to environmental temperature it is not clear if a KD would exert the same beneficial effects under thermal neutral conditions. Adherence to restrictive diets is poor and consequently it is important to examine the effects, and underlying mechanisms, of cycling from a ketogenic to an obesogenic diet. The purpose of the current study was to determine if housing temperature impacted the effects of a KD in obese mice and to determine if the mechanisms driving KD-induced weight loss reverse when mice are switched to an obesogenic high fat diet. We demonstrate that KD-induced reductions in food intake, increases in energy expenditure, weight loss and improvements in glucose homeostasis are not dependent upon housing temperature. KD-induced weight loss seems to be largely explained by reductions in caloric intake while cycling mice back to an obesogenic diet following a period of KD feeding leads to hyperphagia-induced weight gain. Collectively, our results suggest that prior findings with mice fed a KD at room temperature are likely not an artifact of how mice were housed and that initial changes in weight when transitioning from an obesogenic to a ketogenic diet or back are largely dependent on food intake. KEY POINTS: Ketogenic diets reduce food intake, increase energy expenditure and cause weight loss in rodents Prior preclinical studies have been completed at room temperature, a condition which induces thermal stress and limits clinical translatability Here it is demonstrated that ketogenic diet-induced reductions in food intake, increases in energy expenditure, weight loss and improvements in glucose homeostasis are similar in mice housed at room temperature or thermal neutrality Ketogenic diet-induced reductions in food intake appear to explain a large degree of weight loss. Similarly, switching mice from a ketogenic to an obesogenic diet leads to hyperphagia-mediated weight gain.


Assuntos
Dieta Cetogênica , Camundongos , Animais , Dieta Cetogênica/efeitos adversos , Temperatura , Habitação , Corpos Cetônicos , Redução de Peso , Metabolismo Energético , Camundongos Obesos , Hiperfagia , Aumento de Peso , Glucose
7.
Biol Open ; 11(7)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35876382

RESUMO

Increased serial sarcomere number (SSN) has been observed in rats following downhill running training due to the emphasis on active lengthening contractions; however, little is known about the influence on dynamic contractile function. Therefore, we employed 4 weeks of weighted downhill running training in rats, then assessed soleus SSN and work loop performance. We hypothesised trained rats would produce greater net work output during work loops due to a greater SSN. Thirty-one Sprague-Dawley rats were assigned to a training or sedentary control group. Weight was added during downhill running via a custom-made vest, progressing from 5-15% body mass. Following sacrifice, the soleus was dissected, and a force-length relationship was constructed. Work loops (cyclic muscle length changes) were then performed about optimal muscle length (LO) at 1.5-3-Hz cycle frequencies and 1-7-mm length changes. Muscles were then fixed in formalin at LO. Fascicle lengths and sarcomere lengths were measured to calculate SSN. Intramuscular collagen content and crosslinking were quantified via a hydroxyproline content and pepsin-solubility assay. Trained rats had longer fascicle lengths (+13%), greater SSN (+8%), and a less steep passive force-length curve than controls (P<0.05). There were no differences in collagen parameters (P>0.05). Net work output was greater (+78-209%) in trained than control rats for the 1.5-Hz work loops at 1 and 3-mm length changes (P<0.05), however, net work output was more related to maximum specific force (R2=0.17-0.48, P<0.05) than SSN (R2=0.03-0.07, P=0.17-0.86). Therefore, contrary to our hypothesis, training-induced sarcomerogenesis likely contributed little to the improvements in work loop performance. This article has an associated First Person interview with the first author of the paper.


Assuntos
Corrida , Sarcômeros , Animais , Humanos , Músculo Esquelético , Ratos , Ratos Sprague-Dawley , Corrida/fisiologia , Sarcômeros/fisiologia
8.
J Physiol ; 600(11): 2713-2728, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35507699

RESUMO

Antipsychotic (AP) medications, such as olanzapine (OLZ), are used in the treatment of schizophrenia and a growing number of 'off-label' conditions. A single dose of OLZ causes robust increases in blood glucose within minutes of treatment. The purpose of the current study was to investigate whether interventions that increase circulating ketone bodies (fasting, ß-hydroxybutyrate (ßHB), ketone esters or a ketogenic diet (KD)) would be sufficient to protect against the acute metabolic side effects of OLZ. We demonstrate that fasting or the short-term consumption of a KD protects against OLZ-induced hyperglycaemia, independent of alterations in whole-body insulin action, and in parallel with a blunted rise in serum glucagon. Interestingly, the effects of fasting and KDs were not recapitulated by acutely increasing circulating concentrations of ketone bodies through treatment with ßHB or oral ketone esters, approaches which increase ketone bodies to physiological or supra-physiological levels, respectively. Collectively, our findings demonstrate that fasting and the short-term consumption of a KD can protect against acute AP-induced perturbations in glucose homeostasis, whereas manipulations which acutely increase circulating ketone bodies do not elicit the same beneficial effects. KEY POINTS: Antipsychotic medications cause rapid and robust increases in blood glucose. Co-treatment approaches to offset these harmful metabolic side effects have not been identified. We demonstrate that fasting or the consumption of a short-term ketogenic diet, but not treatment with ß-hydroxybutyrate or oral ketone esters, protects against acute antipsychotic-induced hyperglycaemia. The protective effects of fasting and ketogenic diets were paralleled by reductions in serum glucagon, but not improvements in whole-body insulin action.


Assuntos
Antipsicóticos , Dieta Cetogênica , Hiperglicemia , Ácido 3-Hidroxibutírico/efeitos adversos , Ácido 3-Hidroxibutírico/metabolismo , Animais , Antipsicóticos/efeitos adversos , Glicemia , Ésteres , Jejum , Glucagon , Hiperglicemia/induzido quimicamente , Hiperglicemia/prevenção & controle , Insulina , Corpos Cetônicos/metabolismo , Cetonas , Camundongos , Olanzapina/efeitos adversos
9.
Physiol Rep ; 10(4): e15187, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35179321

RESUMO

Repeated activation of the beta 3 adrenergic receptor (ß3AR) with the agonist CL 316,243 (CL) results in remodeling of white adipose tissue (WAT) characterized by increased mitochondrial enzymes and expression of uncoupling protein 1 (UCP1). ß3AR activation also has profound acute metabolic effects including rapidly decreasing blood glucose, secondary to fatty acid-induced increases in insulin, and increasing energy expenditure. The acute (single dose) effects of ß3AR activation have largely been examined in treatment naive animals and under room temperature housing conditions. The current study examined if repeated CL treatment would lead to an attenuation of acute metabolic effects of CL treatment under thermoneutral housing conditions and if this could be rescued with cilostamide, a phosphodiesterase inhibitor. We provide evidence demonstrating that the acute effects of CL to increase serum fatty acids and insulin and reduce blood glucose, but not increases in energy expenditure, are attenuated in mice following repeated treatment with CL. This occurs in parallel with reductions in indices of protein kinase A signaling in WAT including the phosphorylation of hormone sensitive lipase. The findings of attenuated serum fatty acid, insulin, and blood glucose responses were confirmed in both high-fat fed and UCP1-/- mice repeatedly treated with CL. Desensitization to CL in mice was rescued by cilostamide. Herein, we provide evidence that the glucose lowering, but not thermogenesis inducing, effects of CL are attenuated with repeated treatment and can be rescued by cilostamide. The findings of this study point toward novel adjunct treatment approaches that could be used to maximize therapeutic, glucose lowering effects of ß3AR agonists.


Assuntos
Glicemia/metabolismo , Dioxóis/farmacologia , Hipoglicemiantes/farmacologia , Inibidores de Fosfodiesterase/farmacologia , Quinolonas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Ácidos Graxos/metabolismo , Insulina/metabolismo , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo
10.
FASEB J ; 36(3): e22205, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35157333

RESUMO

Increasing whole-body energy expenditure via the pharmacological activation of uncoupling protein 1 (UCP1)-dependent brown adipose tissue (BAT) thermogenesis is a promising weight management strategy, yet most therapeutics studied in rodents to date either induce compensatory increases in energy intake, have thermogenic effects that are confounded by sub-thermoneutral housing temperatures or are not well tolerated in humans. Here, we sought to determine whether the non-invasive topical application of the pharmacological cold mimetic and transient receptor potential (TRP) cation channel subfamily M member 8 (TRPM8) agonist L-menthol (MNTH), could be used to stimulate BAT thermogenesis and attenuate weight gain in mice housed at thermoneutrality. Using three different strains of mice and multiple complimentary approaches to quantify thermogenesis in vivo, coupled with ex vivo models to quantify direct thermogenic effects, we were able to convincingly demonstrate the following: (1) acute topical MNTH application induces BAT thermogenesis in a TRPM8- and UCP1-dependent manner; (2) MNTH-induced BAT thermogenesis is sufficient to attenuate weight gain over time without affecting energy intake in lean and obese mice; (3) the ability of topical MNTH application to stimulate BAT thermogenesis is mediated, in part, by a central mechanism involving the release of norepinephrine. These data collectively suggest that topical application of MNTH may be a promising weight management strategy.


Assuntos
Tecido Adiposo Marrom/metabolismo , Mentol/farmacologia , Canais de Cátion TRPM/metabolismo , Termogênese , Proteína Desacopladora 1/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos , Animais , Temperatura Baixa , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Canais de Cátion TRPM/agonistas
11.
J Appl Physiol (1985) ; 130(2): 466-478, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33382959

RESUMO

Olanzapine (OLZ) is used in the treatment of schizophrenia and a growing number of "off-label" conditions. Although effective in reducing psychoses, OLZ causes rapid impairments in glucose and lipid homeostasis. The purpose of this study was to investigate if voluntary physical activity via wheel running (VWR) would protect against the acute metabolic side effects of OLZ. Male C57BL/6J mice remained sedentary or were provided with running wheels overnight, before treatment with OLZ either at the beginning of the light cycle, or 7 or 24 h following the cessation of VWR. Prior VWR protected against OLZ-induced hyperglycemia immediately and 7 h following a bout of overnight wheel running. Protection against, hyperglycemia immediately following VWR was associated with increased insulin tolerance and an attenuated OLZ-induced increase in the serum glucagon:insulin ratio. The protective effect of VWR against OLZ-induced increases in hyperglycemia and glucagon:insulin ratio was maintained in high-fat fed, and AMPK ß1-deficient mice, models which display a potentiated OLZ-induced increase in blood glucose. Repeated OLZ treatment did not impair VWR performance and protection against the acute effects of OLZ on blood glucose was present after 1 wk of daily OLZ treatment in mice given access to running wheels. In contrast to the effects on glucose metabolism, VWR, for the most part, did not impact OLZ-induced perturbations in lipolysis, liver triglyceride accumulation, or whole body substrate oxidation. Collectively, our findings demonstrate the efficacy of voluntary physical activity as an approach to protect against OLZ-induced impairments in glucose metabolism.NEW & NOTEWORTHY The antipsychotic medication olanzapine causes rapid and large increases in blood glucose. We demonstrate that a prior bout of voluntary overnight wheel running can protect against this harmful side effect and is likely mediated by reductions in olanzapine-induced increases in the circulating glucagon to insulin ratio. This study highlights the powerful effects of voluntary activity in conditions of treatment with antipsychotic medications.


Assuntos
Hiperglicemia , Atividade Motora , Animais , Glicemia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Olanzapina
12.
Behav Brain Res ; 400: 113049, 2021 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-33290757

RESUMO

Antipsychotic (AP) medications are associated with an increased risk for developing metabolic side effects including weight gain, dyslipidemia, hypertension, type 2 diabetes (T2D), and cardiovascular disease. Previous reviews have focused on the chronic metabolic side effects associated with AP use. However, an underappreciated aspect of APs are the rapid perturbations in glucose and lipid metabolism that occur with each dose of drug. The purpose of this narrative review is to summarize work examining the peripheral mechanisms of acute olanzapine-induced related metabolic disturbances. We also discuss recent studies that have attempted to elucidate treatment approaches to mitigate AP-induced impairments in fuel metabolism.


Assuntos
Antipsicóticos/efeitos adversos , Modelos Animais de Doenças , Doenças Metabólicas/induzido quimicamente , Olanzapina/efeitos adversos , Animais , Antipsicóticos/administração & dosagem , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/metabolismo , Doenças Metabólicas/prevenção & controle , Olanzapina/administração & dosagem
13.
Am J Physiol Endocrinol Metab ; 319(6): E1101-E1111, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33017220

RESUMO

Olanzapine is a second-generation antipsychotic (SGA) used in the treatment of schizophrenia and a number of off-label conditions. Although effective in reducing psychoses, acute olanzapine treatment causes hyperglycemia. Pharmacological agonists of the glucagon-like peptide 1 (GLP1) receptor have been shown to offset weight gain associated with chronic SGA administration. It is not known whether GLP1 receptor agonism would mitigate the acute metabolic side effects of SGAs. Within this context, we sought to determine whether pharmacological targeting of the GLP1 receptor would be sufficient to protect against acute olanzapine-induced impairments in glucose and lipid homeostasis. Male C57BL/6J mice were treated with olanzapine and/or the GLP1 receptor agonists liraglutide and exendin 4, and the blood glucose response was measured. We found that liraglutide or exendin 4 completely protected male mice against olanzapine-induced hyperglycemia in parallel with increases in circulating insulin (liraglutide, exendin 4) and reductions in glucagon (liraglutide only). In additional experiments, female mice, which are protected from acute olanzapine-induced hyperglycemia, displayed hyperglycemia, increases in glucagon, and reductions in insulin when treated with olanzapine and the GLP1 receptor antagonist exendin 9-39 compared with olanzapine treatment alone. Although in some instances the pharmacological targeting of the GLP1 receptor attenuated indexes of olanzapine-induced lipolysis, increases in liver triglyceride accumulation were not impacted. Our findings provide evidence that signaling through the GLP1 receptor can remarkably influence acute olanzapine-induced hyperglycemia, and from the standpoint of protecting against acute excursions in blood glucose, GLP1 receptor agonists should be considered as an adjunct treatment approach.NEW & NOTEWORTHY Antipsychotic drugs cause rapid perturbations in glucose and lipid metabolism. In the present study we have demonstrated that cotreatment with glucagon-like peptide 1 (GLP1) receptor agonists, such as liraglutide, protects against metabolic dysregulation caused by the antipsychotic drug olanzapine. These findings suggest that pharmacological targeting of the GLP1 receptor could be an effective adjunct approach to mitigate the harmful acute metabolic side effects of antipsychotic drugs.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Hiperglicemia/induzido quimicamente , Hiperglicemia/prevenção & controle , Olanzapina , Inibidores Seletivos de Recaptação de Serotonina , Animais , Exenatida/uso terapêutico , Feminino , Teste de Tolerância a Glucose , Hipoglicemiantes/uso terapêutico , Lipólise/efeitos dos fármacos , Liraglutida/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Triglicerídeos/metabolismo
14.
FASEB J ; 33(12): 14010-14021, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31581839

RESUMO

Olanzapine (OLZ) is a second-generation antipsychotic that is used to treat schizophrenia but also causes acute hyperglycemia. This study aimed to determine if the ablation of AMPK ß1-containing complexes potentiates acute OLZ-induced metabolic dysfunction and if the activation of AMPK ß1 suppresses these effects. Female AMPK ß1-/- or wild-type (WT) control mice were treated with OLZ, and changes in blood glucose, serum and liver metabolites, whole-body fuel oxidation, and pyruvate-induced increases in blood glucose were measured. Additionally, WT mice were cotreated with OLZ and A769662, a specific AMPK ß1 activator, and we determined if cotreatment protected against acute, OLZ-induced metabolic dysfunction. OLZ-induced increases in blood glucose were exacerbated in AMPK ß1-/- mice compared with WT mice, and this was paralleled by greater OLZ-induced increases in markers of liver glucose production, such as pyruvate tolerance, serum glucagon, and glucagon responsiveness. Cotreatment with A769662 attenuated OLZ-induced increases in blood glucose, serum nonesterified fatty acid, and glycerol. Furthermore, this effect was absent in AMPK ß1-/- mice, consistent with A769662's specificity for the AMPK ß1 subunit. Reductions in AMPK activity potentiate the effects of acute OLZ treatment on blood glucose, whereas specifically targeting AMPK ß1-containing complexes is sufficient to protect against OLZ-induced hyperglycemia.-Shamshoum, H., Medak, K. D., Townsend, L. K., Ashworth, K. E., Bush, N. D., Hahn, M. K., Kemp, B. E., Wright, D. C. AMPK ß1 activation suppresses antipsychotic-induced hyperglycemia in mice.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Antipsicóticos/efeitos adversos , Hiperglicemia/induzido quimicamente , Olanzapina/efeitos adversos , Proteínas Quinases Ativadas por AMP/genética , Animais , Compostos de Bifenilo , Glicemia/efeitos dos fármacos , Feminino , Deleção de Genes , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Teste de Tolerância a Glucose , Camundongos , Pironas/farmacologia , Ácido Pirúvico/efeitos adversos , Tiofenos/farmacologia
15.
Psychoneuroendocrinology ; 110: 104413, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31499390

RESUMO

Olanzapine is a second-generation antipsychotic (SGA) used frequently in the treatment of schizophrenia and a growing list of off-label conditions. Though effective in reducing psychoses, acute olanzapine treatment causes rapid increases in blood glucose that are believed to be mediated by increases in liver glucose output, skeletal muscle insulin resistance, and beta cell dysfunction. Further, the acute lipidemic response to olanzapine has been largely unexplored. While females have been reported to be more susceptible to olanzapine-induced weight gain, there is little known about the impact of sex on the acute response to SGAs. The purpose of this study was to determine if the acute effects of SGAs on glucose and lipid metabolism display a sexually dimorphic response in C57BL/6 J mice and examine potential mechanisms mediating this effect. Age matched male and female C57BL/6 J mice were treated with olanzapine (5 mg/ kg, IP) or vehicle control and blood glucose was measured at baseline, 15, 30, 60, 90, and 120 min post-treatment and tissues and serum harvested. These experiments were repeated, and mice underwent an insulin (0.5 IU/kg) or pyruvate tolerance test (2 g/kg) following 60 min of olanzapine treatment. Females were protected against olanzapine-induced increases in blood glucose and pyruvate intolerance compared to male mice, and this occurred despite the development of severe insulin resistance. In male mice olanzapine increased the glucagon:insulin ratio whereas in females this ratio was reduced. When challenged with exogenous glucagon (1 mg/kg IP), females were less responsive than males. Male and female mice displayed similar increases in whole body fatty acid oxidation, serum fatty acids and liver triglyceride accumulation. Our findings provide evidence that while there are no apparent sex differences in the lipid metabolism response to olanzapine, that females are protected from acute olanzapine-induced excursions in blood glucose. This is likely due in part to reductions in the glucagon:insulin ratio and glucagon responsiveness which could impact olanzapine induced increases in liver glucose production.


Assuntos
Hiperglicemia/induzido quimicamente , Hiperglicemia/prevenção & controle , Olanzapina/efeitos adversos , Caracteres Sexuais , Doença Aguda , Animais , Glicemia/metabolismo , Feminino , Teste de Tolerância a Glucose , Hiperglicemia/sangue , Hiperglicemia/patologia , Insulina/metabolismo , Resistência à Insulina , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Índice de Gravidade de Doença
16.
J Physiol ; 597(17): 4581-4600, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31297830

RESUMO

KEY POINTS: Mice are commonly housed at room temperatures below their thermoneutral zone meaning they are exposed to chronic thermal stress. Endurance exercise induces browning and mitochondrial biogenesis in white adipose tissue of rodents, but there are conflicting reports of this phenomenon in humans. We hypothesized that the ambient room temperature at which mice are housed could partially explain these discrepant reports between humans and rodents. We housed mice at room temperature or thermoneutrality and studied their physiological responses to acute and chronic exercise. We found that thermoneutral housing altered running behaviour and glucose homeostasis, and further, that exercise-induced markers of mitochondrial biogenesis and the browning of white adipose tissue were reduced in mice housed at thermoneutrality. ABSTRACT: Mice are often housed at temperatures below their thermoneutral zone resulting in compensatory increases in thermogenesis. Despite this, many studies report housing mice at room temperature (RT), likely for the convenience of the researchers studying them. As such, the conflicting reports between humans and rodents regarding the ability of exercise to increase mitochondrial and thermogenic markers in white adipose tissue may be explained by the often-overlooked variable, housing temperature. To test this hypothesis, we housed male C57BL/6 mice at RT (22°C) or thermoneutrality (TN) (29°C) with or without access to a voluntary running wheel for 6 weeks or subjected them to an acute exhaustive bout of treadmill running. We examined the gene expression and protein content of select mitochondrial and thermogenic markers in skeletal muscle, epididymal white adipose tissue (eWAT), inguinal white adipose tissue (iWAT) and brown adipose tissue (BAT). We also assessed adipocyte morphology and indices of glucose homeostasis. Housing temperature influenced glucose tolerance and insulin action in vivo, yet the beneficial effects of exercise, both acute and chronic, remained intact in eWAT, BAT and skeletal muscle irrespective of housing temperature. Housing mice at TN led to an attenuation of some of the effects of exercise on iWAT. Collectively, we present data characterizing the acute and chronic metabolic adaptations to exercise at different housing temperatures and demonstrate, for the first time, that temperature influences the ability of exercise to increase markers of mitochondrial biogenesis and the browning of white adipose tissue.


Assuntos
Adaptação Fisiológica/fisiologia , Metabolismo Energético/fisiologia , Condicionamento Físico Animal/fisiologia , Aclimatação/fisiologia , Adipócitos/metabolismo , Adipócitos/fisiologia , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Marrom/fisiologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiologia , Animais , Dieta Hiperlipídica/efeitos adversos , Ingestão de Alimentos/fisiologia , Expressão Gênica/fisiologia , Habitação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mitocôndrias/fisiologia , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Obesidade/metabolismo , Obesidade/fisiopatologia , Temperatura , Termogênese/fisiologia
17.
J Lipid Res ; 60(7): 1236-1249, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31085628

RESUMO

The relationship between liver interleukin-6 (IL-6) resistance following high-fat diet (HFD)-induced obesity and glucose intolerance is unclear. The purpose of this study was to assess the temporal development of hepatic IL-6 resistance and the role of endoplasmic reticulum (ER) stress in this process. We hypothesized that HFD would rapidly induce hepatic IL-6 resistance through a mechanism involving ER stress. Male C57BL/6N mice consumed chow or a HFD (60%) derived from lard (saturated) or olive oil (monounsaturated) for 4 days or 7 weeks before being injected intraperitoneally with IL-6 (6 ng·kg-1). Glucose, insulin, and pyruvate tolerance tests were used as proxies for systemic glucose metabolism and hepatic glucose production, respectively. Primary mouse hepatocytes were incubated with palmitate (saturated) and oleate (unsaturated) overnight, then treated with 20 ng/ml IL-6. ER stress was induced via tunicamycin or prevented by sodium phenylbutyrate (PBA). Seven weeks of a saturated, but not monounsaturated, HFD reduced hepatic IL-6 signaling in conjunction with hepatic ER stress. Palmitate directly impaired IL-6 signaling in hepatocytes along with inducing ER stress. Pharmacologically induced ER stress caused hepatic IL-6 resistance, whereas PBA reversed HFD-induced IL-6 resistance. Chronic HFD-induced obesity is associated with hepatic IL-6 resistance due to saturated FA-induced ER stress.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Hepatócitos/efeitos dos fármacos , Hepatócitos/metabolismo , Interleucina-6/farmacologia , Fígado/metabolismo , Obesidade/induzido quimicamente , Obesidade/metabolismo , Animais , Gorduras na Dieta/efeitos adversos , Estresse do Retículo Endoplasmático , Glucose/metabolismo , Intolerância à Glucose/metabolismo , Insulina/metabolismo , Resistência à Insulina/fisiologia , Fígado/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenilbutiratos/farmacologia , Transdução de Sinais/efeitos dos fármacos , Tunicamicina/farmacologia
18.
Med Sci Sports Exerc ; 51(6): 1116-1125, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30694975

RESUMO

INTRODUCTION: Follistatin (FST) is a protein with numerous biological roles and was recently identified as an exercise-inducible hepatokine; however, the signals that regulate this are not well understood. The purpose of this study was to delineate potential endocrine factors that may regulate hepatic FST at rest and during exercise. METHODS: This study used four experiments. First, male and female C57BL/6J mice remained sedentary or were subjected to a single bout of exercise at moderate or exhaustive intensity with liver collected immediately post. Second, mice were injected with glucagon (1 mg·kg, 60 min), epinephrine (2 mg·kg, 30 min), glucagon then epinephrine, or saline. Third, mice were pretreated with propranolol (20-60 mg·kg, 30 min) before epinephrine injection. Fourth, glucagon receptor wild type (Gcgr) or knockout (Gcgr) mice were pretreated with saline or propranolol (20 mg·kg, 30 min) and were subjected to a single bout of exhaustive exercise with liver collected immediately post or after 2 h recovery. In all experiments liver FST mRNA expression was measured, and in experiment four FST protein content was measured. RESULTS: A single bout of treadmill exercise performed at an exhaustive but not moderate-intensity increased FST expression, as did injection of glucagon or epinephrine alone and when combined. Pretreatment of mice with propranolol attenuated the epinephrine-induced increase in FST expression. The exercise-induced increase in FST expression was attenuated in Gcgr mice, with no effect of propranolol. Gcgr mice had higher protein content of FST, but there was no effect of exercise or propranolol. CONCLUSIONS: These data suggest that both glucagon and epinephrine regulate hepatic FST expression at rest; however, only glucagon is required for the exercise-induced increase.


Assuntos
Epinefrina/fisiologia , Folistatina/metabolismo , Glucagon/fisiologia , Fígado/metabolismo , Condicionamento Físico Animal , Descanso , Antagonistas Adrenérgicos beta/farmacologia , Animais , Epinefrina/administração & dosagem , Epinefrina/antagonistas & inibidores , Feminino , Expressão Gênica , Glucagon/administração & dosagem , Injeções , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Propranolol/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteína Smad2/metabolismo , Proteína Smad3/metabolismo
20.
FASEB J ; 33(4): 4824-4835, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30615494

RESUMO

Various endocrine factors contribute to cold-induced white adipose tissue (WAT) browning, but glucagon has largely been ignored. The purpose of the current investigation was to determine if glucagon was required for the effects of cold on WAT browning. Utilizing whole-body glucagon receptor knockout (Gcgr-/-) mice and their wild-type (WT) littermate controls, we examined the response of inguinal WAT (iWAT) and interscapular brown adipose tissue (BAT) to an acute (48 h) cold stress or challenge with the ß3-adrenergic agonist CL316,243. The effects of glucagon alone on the induction of thermogenic genes in adipose tissue from C57BL6/J mice were also examined. Gcgr-/- mice displayed modest increases in indices of browning at room temperature while displaying a blunted induction of Ucp1, Cidea, and Ffg21 mRNA expression in iWAT following cold exposure. Similarly, cold induced increases in mitochondrial DNA copy number, and the protein content of mitochondrial respiratory chain complexes, UCP1, and PGC1α were attenuated in iWAT from Gcgr-/- mice. In BAT, the induction of thermogenic markers following cold exposure was reduced, but the effect was less pronounced than in iWAT. Glucagon treatment increased the expression of thermogenic genes in both iWAT and BAT of C57BL6/J mice. In response to CL316,243, circulating fatty acids, glycerol, and the phosphorylation of hormone-sensitive lipase were attenuated in iWAT of Gcgr-/- mice. We provide evidence that glucagon is sufficient for the induction of thermogenic genes in iWAT, and the absence of intact glucagon signaling blunts the cold-induced browning of WAT, possibly due, in part, to impaired adrenergic signaling.-Townsend, L. K., Medak, K. D., Knuth, C. M., Peppler, W. T., Charron, M. J., Wright, D. C. Loss of glucagon signaling alters white adipose tissue browning.


Assuntos
Tecido Adiposo Marrom/metabolismo , Tecido Adiposo Branco/metabolismo , Glucagon/metabolismo , Receptores de Glucagon/metabolismo , Tecido Adiposo/metabolismo , Animais , Dioxóis/farmacologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de Glucagon/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...