Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PLoS One ; 16(1): e0246138, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33508018

RESUMO

Visualizing actin filaments in fixed cells is of great interest for a variety of topics in cell biology such as cell division, cell movement, and cell signaling. We investigated the possibility of replacing phalloidin, the standard reagent for super-resolution imaging of F-actin in fixed cells, with the actin binding peptide 'lifeact'. We compared the labels for use in single molecule based super-resolution microscopy, where AlexaFluor 647 labeled phalloidin was used in a dSTORM modality and Atto 655 labeled lifeact was used in a single molecule imaging, reversible binding modality. We found that imaging with lifeact had a comparable resolution in reconstructed images and provided several advantages over phalloidin including lower costs, the ability to image multiple regions of interest on a coverslip without degradation, simplified sequential super-resolution imaging, and more continuous labeling of thin filaments.


Assuntos
Citoesqueleto de Actina/patologia , Carbocianinas/química , Faloidina/química , Citoesqueleto de Actina/química , Células HeLa , Humanos , Microscopia de Fluorescência
2.
Int J Mol Sci ; 21(9)2020 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-32344909

RESUMO

The identification of biomarkers associated with major depressive disorder (MDD) holds great promise to develop an objective laboratory test. However, current biomarkers lack discriminative power due to the complex biological background, and not much is known about the influence of potential modifiers such as gender. We first performed a cross-sectional study on the discriminative power of biomarkers for MDD by investigating gender differences in biomarker levels. Out of 28 biomarkers, 21 biomarkers were significantly different between genders. Second, a novel statistical approach was applied to investigate the effect of gender on MDD disease classification using a panel of biomarkers. Eleven biomarkers were identified in men and eight in women, three of which were active in both genders. Gender stratification caused a (non-significant) increase of Area Under Curve (AUC) for men (AUC = 0.806) and women (AUC = 0.807) compared to non-stratification (AUC = 0.739). In conclusion, we have shown that there are differences in biomarker levels between men and women which may impact accurate disease classification of MDD when gender is not taken into account.


Assuntos
Biomarcadores , Transtorno Depressivo Maior/diagnóstico , Caracteres Sexuais , Adulto , Antidepressivos/uso terapêutico , Área Sob a Curva , Biomarcadores/sangue , Biomarcadores/urina , Proteínas Sanguíneas/análise , Comorbidade , Estudos Transversais , Transtorno Depressivo Maior/sangue , Transtorno Depressivo Maior/tratamento farmacológico , Transtorno Depressivo Maior/urina , Tratamento Farmacológico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Curva ROC , Resistina/sangue , Resistina/urina , Adulto Jovem
3.
Nat Commun ; 10(1): 5171, 2019 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-31729386

RESUMO

Basement membrane transmigration during embryonal development, tissue homeostasis and tumor invasion relies on invadosomes, a collective term for invadopodia and podosomes. An adequate structural framework for this process is still missing. Here, we reveal the modular actin nano-architecture that enables podosome protrusion and mechanosensing. The podosome protrusive core contains a central branched actin module encased by a linear actin module, each harboring specific actin interactors and actin isoforms. From the core, two actin modules radiate: ventral filaments bound by vinculin and connected to the plasma membrane and dorsal interpodosomal filaments crosslinked by myosin IIA. On stiff substrates, the actin modules mediate long-range substrate exploration, associated with degradative behavior. On compliant substrates, the vinculin-bound ventral actin filaments shorten, resulting in short-range connectivity and a focally protrusive, non-degradative state. Our findings redefine podosome nanoscale architecture and reveal a paradigm for how actin modularity drives invadosome mechanosensing in cells that breach tissue boundaries.


Assuntos
Actinas/química , Actinas/metabolismo , Podossomos/metabolismo , Actinas/genética , Animais , Adesão Celular , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular , Células Cultivadas , Células Dendríticas/química , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Mecanotransdução Celular , Camundongos , Podossomos/química , Podossomos/genética
4.
Sci Rep ; 9(1): 13791, 2019 09 24.
Artigo em Inglês | MEDLINE | ID: mdl-31551452

RESUMO

In single molecule localization-based super-resolution imaging, high labeling density or the desire for greater data collection speed can lead to clusters of overlapping emitter images in the raw super-resolution image data. We describe a Bayesian inference approach to multiple-emitter fitting that uses Reversible Jump Markov Chain Monte Carlo to identify and localize the emitters in dense regions of data. This formalism can take advantage of any prior information, such as emitter intensity and density. The output is both a posterior probability distribution of emitter locations that includes uncertainty in the number of emitters and the background structure, and a set of coordinates and uncertainties from the most probable model.


Assuntos
Teorema de Bayes , Cadeias de Markov , Método de Monte Carlo , Algoritmos , Humanos , Probabilidade , Incerteza
5.
Front Immunol ; 9: 2333, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30356797

RESUMO

Activation of the T cell receptor (TCR) on the T cell through ligation with antigen-MHC complex of an antigen-presenting cell (APC) is an essential process in the activation of T cells and induction of the subsequent adaptive immune response. Upon activation, the TCR, together with its associated co-receptor CD3 complex, assembles in signaling microclusters that are transported to the center of the organizational structure at the T cell-APC interface termed the immunological synapse (IS). During IS formation, local cell surface receptors and associated intracellular molecules are reorganized, ultimately creating the typical bull's eye-shaped pattern of the IS. CD6 is a surface glycoprotein receptor, which has been previously shown to associate with CD3 and co-localize to the center of the IS in static conditions or stable T cell-APC contacts. In this study, we report the use of different experimental set-ups analyzed with microscopy techniques to study the dynamics and stability of CD6-TCR/CD3 interaction dynamics and stability during IS formation in more detail. We exploited antibody spots, created with microcontact printing, and antibody-coated beads, and could demonstrate that CD6 and the TCR/CD3 complex co-localize and are recruited into a stimulatory cluster on the cell surface of T cells. Furthermore, we demonstrate, for the first time, that CD6 forms microclusters co-localizing with TCR/CD3 microclusters during IS formation on supported lipid bilayers. These co-localizing CD6 and TCR/CD3 microclusters are both radially transported toward the center of the IS formed in T cells, in an actin polymerization-dependent manner. Overall, our findings further substantiate the role of CD6 during IS formation and provide novel insight into the dynamic properties of this CD6-TCR/CD3 complex interplay. From a methodological point of view, the biophysical approaches used to characterize these receptors are complementary and amenable for investigation of the dynamic interactions of other membrane receptors.


Assuntos
Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/metabolismo , Fenômenos Biofísicos , Complexo CD3/metabolismo , Linfócitos T/fisiologia , Actinas/química , Actinas/metabolismo , Antígenos CD/química , Antígenos de Diferenciação de Linfócitos T/química , Linhagem Celular Tumoral , Imunofluorescência , Humanos , Sinapses Imunológicas/fisiologia , Ligação Proteica , Multimerização Proteica , Transporte Proteico , Complexo Receptor-CD3 de Antígeno de Linfócitos T/química , Complexo Receptor-CD3 de Antígeno de Linfócitos T/metabolismo
6.
Nat Commun ; 7: 13127, 2016 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-27721497

RESUMO

Podosomes are cytoskeletal structures crucial for cell protrusion and matrix remodelling in osteoclasts, activated endothelial cells, macrophages and dendritic cells. In these cells, hundreds of podosomes are spatially organized in diversely shaped clusters. Although we and others established individual podosomes as micron-sized mechanosensing protrusive units, the exact scope and spatiotemporal organization of podosome clustering remain elusive. By integrating a newly developed extension of Spatiotemporal Image Correlation Spectroscopy with novel image analysis, we demonstrate that F-actin, vinculin and talin exhibit directional and correlated flow patterns throughout podosome clusters. Pattern formation and magnitude depend on the cluster actomyosin machinery. Indeed, nanoscopy reveals myosin IIA-decorated actin filaments interconnecting multiple proximal podosomes. Extending well-beyond podosome nearest neighbours, the actomyosin-dependent dynamic spatial patterns reveal a previously unappreciated mesoscale connectivity throughout the podosome clusters. This directional transport and continuous redistribution of podosome components provides a mechanistic explanation of how podosome clusters function as coordinated mechanosensory area.


Assuntos
Actomiosina/metabolismo , Citoesqueleto/metabolismo , Podossomos/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Extensões da Superfície Celular/metabolismo , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Humanos , Modelos Biológicos , Miosina não Muscular Tipo IIA/metabolismo , Polimerização , Reologia , Talina/metabolismo , Fatores de Tempo , Vinculina/metabolismo
7.
Biomed Opt Express ; 7(6): 2219-36, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-27375939

RESUMO

We have developed a method for performing light-sheet microscopy with a single high numerical aperture lens by integrating reflective side walls into a microfluidic chip. These 45° side walls generate light-sheet illumination by reflecting a vertical light-sheet into the focal plane of the objective. Light-sheet illumination of cells loaded in the channels increases image quality in diffraction limited imaging via reduction of out-of-focus background light. Single molecule super-resolution is also improved by the decreased background resulting in better localization precision and decreased photo-bleaching, leading to more accepted localizations overall and higher quality images. Moreover, 2D and 3D single molecule super-resolution data can be acquired faster by taking advantage of the increased illumination intensities as compared to wide field, in the focused light-sheet.

8.
Eur J Cell Biol ; 93(10-12): 380-7, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25454791

RESUMO

Podosomes are micrometer-sized, circular adhesions formed by cells such as osteoclasts, macrophages, dendritic cells, and endothelial cells. Because of their small size and the lack of methods to visualize individual proteins and protein complexes, podosomes have long been considered a simple two-module structure with a protrusive actin core and a surrounding adhesive ring composed of integrins and cytoskeletal adaptor proteins such as vinculin and talin. In the past decade, the applications of fluorescence based techniques that circumvent the diffraction limit of conventional light microscopy took a major leap forward. Podosomes have been imaged by a variety of these super-resolution methods, and in this concise review we discuss how these super-resolution data have increased our understanding of the podosome ultra-structure and function.


Assuntos
Extensões da Superfície Celular/metabolismo , Animais , Extensões da Superfície Celular/ultraestrutura , Humanos , Microscopia de Fluorescência/métodos , Imagem Molecular/métodos
9.
Int J Mol Sci ; 14(4): 6542-55, 2013 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-23528886

RESUMO

Many processes regulating immune responses are initiated by G-protein coupled receptors (GPCRs) and report biochemical changes in the microenvironment. Dendritic cells (DCs) are the most potent antigen-presenting cells and crucial for the regulation of innate and adaptive immune responses. The lipid mediator Prostaglandin E2 (PGE2) via four GPCR subtypes (EP1-4) critically regulates DC generation, maturation and migration. The role of PGE2 signaling in DC biology was unraveled by the characterization of EP receptor subtype expression in DC progenitor cells and DCs, the identification of the signaling pathways initiated by these GPCR subtypes and the classification of DC responses to PGE2 at different stages of differentiation. Here, we review the advances in PGE2 signaling in DCs and describe the efforts still to be made to understand the spatio-temporal fine-tuning of PGE2 responses by DCs.


Assuntos
Ciclo Celular , Células Dendríticas/citologia , Células Dendríticas/metabolismo , Dinoprostona/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Animais , Humanos , Modelos Biológicos
10.
Microsc Microanal ; 19(1): 180-9, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23347434

RESUMO

Podosomes are cellular adhesion structures involved in matrix degradation and invasion that comprise an actin core and a ring of cytoskeletal adaptor proteins. They are most often identified by staining with phalloidin, which binds F-actin and therefore visualizes the core. However, not only podosomes, but also many other cytoskeletal structures contain actin, which makes podosome segmentation by automated image processing difficult. Here, we have developed a quantitative image analysis algorithm that is optimized to identify podosome cores within a typical sample stained with phalloidin. By sequential local and global thresholding, our analysis identifies up to 76% of podosome cores excluding other F-actin-based structures. Based on the overlap in podosome identifications and quantification of podosome numbers, our algorithm performs equally well compared to three experts. Using our algorithm we show effects of actin polymerization and myosin II inhibition on the actin intensity in both podosome core and associated actin network. Furthermore, by expanding the core segmentations, we reveal a previously unappreciated differential distribution of cytoskeletal adaptor proteins within the podosome ring. These applications illustrate that our algorithm is a valuable tool for rapid and accurate large-scale analysis of podosomes to increase our understanding of these characteristic adhesion structures.


Assuntos
Automação/métodos , Extensões da Superfície Celular , Processamento de Imagem Assistida por Computador/métodos , Microscopia de Fluorescência/métodos , Actinas/metabolismo , Células Cultivadas , Células Dendríticas/citologia , Humanos , Faloidina/metabolismo , Coloração e Rotulagem/métodos
11.
PLoS One ; 6(7): e22328, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21799824

RESUMO

Phagocytosis is a complex process that involves membranelipid remodeling and the attraction and retention of key effector proteins. Phagosome phenotype depends on the type of receptor engaged and can be influenced by extracellular signals. Interleukin 4 (IL-4) is a cytokine that induces the alternative activation of macrophages (MΦs) upon prolonged exposure, triggering a different cell phenotype that has an altered phagocytic capacity. In contrast, the direct effects of IL-4 during phagocytosis remain unknown. Here, we investigate the impact of short-term IL-4 exposure (1 hour) during phagocytosis of IgG-opsonized yeast particles by MΦs. By time-lapse confocal microscopy of GFP-tagged lipid-sensing probes, we show that IL-4 increases the negative charge of the phagosomal membrane by prolonging the presence of the negatively charged second messenger PI(3,4,5)P3. Biochemical assays reveal an enhanced PI3K/Akt activity upon phagocytosis in the presence of IL-4. Blocking the specific class I PI3K after the onset of phagocytosis completely abrogates the IL-4-induced changes in lipid remodeling and concomitant membrane charge. Finally, we show that IL-4 direct signaling leads to a significantly prolonged retention profile of the signaling molecules Rac1 and Rab5 to the phagosomal membrane in a PI3K-dependent manner. This protracted early phagosome phenotype suggests an altered maturation, which is supported by the delayed phagosome acidification measured in the presence of IL-4. Our findings reveal that molecular differences in IL-4 levels, in the extracellular microenvironment, influence the coordination of lipid remodeling and protein recruitment, which determine phagosome phenotype and, eventually, fate. Endosomal and phagosomal membranes provide topological constraints to signaling molecules. Therefore, changes in the phagosome phenotype modulated by extracellular factors may represent an additional mechanism that regulates the outcome of phagocytosis and could have significant impact on the net biochemical output of a cell.


Assuntos
Interleucina-4/farmacologia , Lipídeos de Membrana/metabolismo , Fagossomos/efeitos dos fármacos , Fagossomos/metabolismo , Fenótipo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Linhagem Celular , Concentração de Íons de Hidrogênio , Imunoglobulina G/imunologia , Membranas Intracelulares/efeitos dos fármacos , Membranas Intracelulares/metabolismo , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Lipídeos de Membrana/química , Camundongos , Fagocitose/efeitos dos fármacos , Fagossomos/enzimologia , Fosfatidilinositóis/metabolismo , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Zimosan/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...