Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 408: 124452, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33243646

RESUMO

A bench-scale plasma reactor was used to degrade poly- and perfluoroalkyl substances (PFAS) in landfill leachate samples obtained from three different locations. In the leachate samples before treatment, five long-chain, six short-chain perfluoroalkyl acids (PFAAs) and eight PFAA precursors were detected in a wide concentration range (~102 to 105 ng/L; total oxidizable precursors (TOP) ~106 ng/L). The concentration of perfluorooctane sulfonate (PFOS) plus perfluorooctanoic acid (PFOA) ranged between 2000 and 3000 ng/L. Plasma-based water treatment of 500 mL samples resulted in faster removal rates for longer-chain than shorter chain length PFAAs. Both PFOS and PFOA were removed to below United States Environmental Protection Agency's (USEPA's) health advisory concentration level (HAL) concentrations (<70 ng/L) in 10-75 min; 90% PFOA and PFOS removal was achieved in 10 min. Long-chain and short-chain PFAAs were removed by >99.9% and 10-99.9%, respectively. The removal rate constant (kPFOA+PFOS) for combined PFOA and PFOS ranged between 0.20 and 0.34 min-1. Overall, 60 ± 2% of the TOP concentration and 34 ± 2% of the TOC were removed. No effect of non-PFAS co-contaminants (e.g., total initial organic carbon concentration ~2000 mg/L) on the degradation efficiency was observed. Short-chain PFAA removal efficacy was enhanced by adding a cationic surfactant (cetrimonium bromide). Overall, the results indicate that plasma-based technology may be a viable technology for the treatment of PFAS-contaminated landfill leachates.

2.
Environ Sci Technol ; 54(21): 13973-13980, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-33103418

RESUMO

"High-concentration" and "low-concentration" bench-scale batch plasma reactors were used to effectively degrade per- and polyfluoroalkyl substances (PFAS) at a high concentration (∼100 mg/L) and a low concentration (<1 µg/L), respectively, in ion exchange (IX) regenerant still bottom (SB) solutions. In the SBs, numerous PFAS were detected with a wide concentration range (∼0.01 to 100 mg/L; total oxidizable precursors (TOP) ∼4000 to 10000 mg/L). In the "high-concentration" plasma reactor, the concentrations of PFAS precursors and long-chain perfluoroalkyl acids (PFAAs) (≥6C for PFSAs and ≥8C for perfluorocarboxylic acids (PFCAs)) were decreased by >99.9% in 2 h, and short-chain PFAAs (<6C for perfluorocarboxylic acids (PFSAs) and <8C PFCAs) were decreased by >99% in 6 h of treatment. Subsequently, a "low concentration" plasma reactor was used to remove additional PFAAs. In this reactor, the addition of CTAB (cetrimonium bromide, a cationic surfactant) caused short-chain PFAAs, other than PFBA, to be removed to below detection limits in 90 min of treatment time. Overall, >99% of the TOP present in SBs was removed during the treatment. Fluorine recovery of 47 to 117% was obtained in six SB samples. Energy requirement (EE/O) for the treatment of PFOA and PFOS from SBs ranged from 380 to 830 kWh/m3.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Monitoramento Ambiental , Fluorocarbonos/análise , Troca Iônica , Plasma/química , Poluentes Químicos da Água/análise
3.
Environ Sci Technol ; 53(19): 11375-11382, 2019 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-31479249

RESUMO

A pilot-scale plasma reactor installed into an 8 × 20 ft2 mobile trailer was used to rapidly and effectively degrade poly- and perfluoroalkyl substances (PFAS) from liquid investigation-derived waste (IDW; development and purge water from monitoring wells) obtained from 13 different site investigations at Air Force installations. In the raw water, numerous PFAS were detected in a wide concentration range (∼10-105 ng/L; total oxidizable precursors (TOP) ∼102-105 ng/L, total fluorine by combustion ion chromatography ∼102 to 5 × 106 ng F/L). The concentration of total PFAS (12 perfluorocarboxylic acids (PFCAs) and perfluoroalkyl sulfonates (PFSAs)) in the 13 samples ranged between 2.7 and 1440 µg/L and the concentration of perfluorooctane sulfonate (PFOS) plus perfluorooctanoic acid (PFOA) ranged between 365 and 73700 ng/L. Plasma-based water treatment resulted in rapid perfluoroalkyl acids (PFAAs) removal from 4 L individual IDW samples with faster rates for longer-chain PFCAs (C ≥ 8) and PFSAs (C ≥ 6) than for PFCAs and PFSAs of shorter chain length. In 9 of the 13 IDW samples, both PFOS and PFOA were removed to below United States Environmental Protection Agency's (USEPA's) health advisory concentration level (HAL) concentrations in <1 min, whereas longer treatment times (up to 50 min) were required for the remaining four IDW samples due to either extremely high solution electrical conductivity, which decreased the plasma-liquid contact area (one IDW sample) or high concentrations of PFAAs and their precursors; the latter was found to be converted to PFAAs during the treatment. Overall, 36-99% of the TOP concentration present in the IDWs was removed during the treatment. There was no effect of non-PFAS co-contaminants on the degradation efficiency. Overall, the results indicate that plasma-based water treatment is a viable technology for the treatment of PFAS-contaminated IDW.


Assuntos
Ácidos Alcanossulfônicos , Fluorocarbonos , Poluentes Químicos da Água , Purificação da Água , Monitoramento Ambiental
4.
Environ Sci Technol ; 51(3): 1643-1648, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28080043

RESUMO

A process based on electrical discharge plasma was tested for the transformation of perfluorooctanoic acid (PFOA). The plasma-based process was adapted for two cases, high removal rate and high removal efficiency. During a 30 min treatment, the PFOA concentration in 1.4 L of aqueous solutions was reduced by 90% with the high rate process (76.5 W input power) and 25% with the high efficiency process (4.1 W input power). Both achieved remarkably high PFOA removal and defluorination efficiencies compared to leading alternative technologies. The high efficiency process was also used to treat groundwater containing PFOA and several cocontaminants including perfluorooctanesulfonate (PFOS), demonstrating that the process was not significantly affected by cocontaminants and that the process was capable of rapidly degrading PFOS. Preliminary investigation into the byproducts showed that only about 10% of PFOA and PFOS is converted into shorter-chain perfluoroalkyl acids (PFAAs). Investigation into the types of reactive species involved in primary reactions with PFOA showed that hydroxyl and superoxide radicals, which are typically the primary plasma-derived reactive species, play no significant role. Instead, scavenger experiments indicated that aqueous electrons account for a sizable fraction of the transformation, with free electrons and/or argon ions proposed to account for the remainder.


Assuntos
Fluorocarbonos , Purificação da Água , Ácidos Alcanossulfônicos , Caprilatos , Água Subterrânea , Soluções , Poluentes Químicos da Água
5.
J Hazard Mater ; 308: 419-29, 2016 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-26874105

RESUMO

A novel electrical discharge plasma reactor configuration with and without iron ions was evaluated for the degradation of 0.02 mM Bisphenol A (BPA). The pseudo-first-order reaction rate constant calculated for the plasma treatment of BPA with a stainless steel electrode in the presence of dissolved ferrous ion (Fe(2+)) salts (termed plasma/Fenton treatment) was higher than in the plasma treatment in the absence of iron salts. At the optimal ferrous ion concentration, longer plasma treatment times resulted in higher BPA degradation rates, likely due to increased hydroxyl (OH) radical concentration formed through the decomposition of H2O2. Replacing the stainless steel with a carbon steel grounded electrode resulted in the release of iron ions from the carbon steel thereby increasing the rate of BPA removal and eliminating the need for iron salts. After the plasma/Fenton treatment, >97% of the residual iron salts were removed by coagulation/flocculation/sedimentation. Byproduct identification coupled with density functional theory (DFT) calculations confirmed that OH radical attack on BPA's hydroxyl group is the primary pathway for byproduct formation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...