Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(25): 250603, 2019 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-31347884

RESUMO

In a many-body quantum system, local operators in the Heisenberg picture O(t)=e^{iHt}Oe^{-iHt} spread as time increases. Recent studies have attempted to find features of that spreading which could distinguish between chaotic and integrable dynamics. The operator entanglement-the entanglement entropy in operator space-is a natural candidate to provide such a distinction. Indeed, while it is believed that the operator entanglement grows linearly with time t in chaotic systems, we present evidence that it grows only logarithmically in generic interacting integrable systems. Although this logarithmic growth has been previously established for noninteracting fermions, there has been no progress on interacting integrable systems to date. In this Letter we provide an analytical upper bound on operator entanglement for all local operators in the "Rule 54" qubit chain, a cellular automaton model introduced in the 1990s [Bobenko et al., CMP 158, 127 (1993)CMPHAY0010-361610.1007/BF02097234], and recently advertised as the simplest representative of interacting integrable systems. Physically, the logarithmic bound originates from the fact that the dynamics of the models is mapped onto the one of stable quasiparticles that scatter elastically. The possibility of generalizing this scenario to other interacting integrable systems is briefly discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...