Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Hum Mol Genet ; 25(21): 4787-4803, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28173139

RESUMO

ATRX is a chromatin remodeling protein that is mutated in several intellectual disability disorders including alpha-thalassemia/mental retardation, X-linked (ATR-X) syndrome. We previously reported the prevalence of ophthalmological defects in ATR-X syndrome patients, and accordingly we find morphological and functional visual abnormalities in a mouse model harboring a mutation occurring in ATR-X patients. The visual system abnormalities observed in these mice parallels the Atrx-null retinal phenotype characterized by interneuron defects and selective loss of amacrine and horizontal cells. The mechanisms that underlie selective neuronal vulnerability and neurodegeneration in the central nervous system upon Atrx mutation or deletion are unknown. To interrogate the cellular specificity of Atrx for its retinal neuroprotective functions, we employed a combination of temporal and lineage-restricted conditional ablation strategies to generate five different conditional knockout mouse models, and subsequently identified a non-cell-autonomous requirement for Atrx in bipolar cells for inhibitory interneuron survival in the retina. Atrx-deficient retinal bipolar cells exhibit functional, structural and molecular alterations consistent with impairments in neuronal activity and connectivity. Gene expression changes in the Atrx-null retina indicate defective synaptic structure and neuronal circuitry, suggest excitotoxic mechanisms of neurodegeneration, and demonstrate that common targets of ATRX in the forebrain and retina may contribute to similar neuropathological processes underlying cognitive impairment and visual dysfunction in ATR-X syndrome.


Assuntos
Deficiência Intelectual Ligada ao Cromossomo X/genética , Proteína Nuclear Ligada ao X/genética , Talassemia alfa/genética , Animais , Cromatina , Modelos Animais de Doenças , Interneurônios/metabolismo , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Mutação , Neurônios/metabolismo , Proteínas Nucleares/genética , Retina/metabolismo , Células Bipolares da Retina/metabolismo , Proteína Nuclear Ligada ao X/metabolismo , Talassemia alfa/metabolismo
2.
Hum Mol Genet ; 18(5): 966-77, 2009 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-19088125

RESUMO

ATRX is an SWI/SNF-like chromatin remodeling protein that is mutated in several X-linked mental retardation syndromes, including the ATR-X syndrome. In mice, Atrx expression is widespread and attempts to understand its function in brain development are hampered by the lethality associated with ubiquitous or forebrain-restricted ablation of this gene. One way to circumvent this problem is to study its function in a region of the brain that is dispensable for long-term survival of the organism. The retina is a well-characterized tractable model of CNS development and in our review of 202 ATR-X syndrome patients, we found ocular defects present in approximately 25% of the cases, suggesting that studying Atrx in this tissue will provide insight into function. We report that Atrx is expressed in the neuroprogenitor pool in embryonic retina and in all cell types of the mature retina with the exception of rod photoreceptors. Conditional inactivation of Atrx in the retina during embryogenesis ultimately results in a loss of only two types of neurons, amacrine and horizontal cells. We show that this defect does not arise from a failure to specify these cells but rather a defect in interneuron differentiation and survival post-natally. The timing of cell loss is concomitant with light-dependent changes in synaptic organization in the retina and with a change in Atrx subnuclear localization within these interneurons. Moreover, these interneuron defects are associated with functional deficits as demonstrated by reduced b-wave amplitudes upon electroretinogram analysis. These results implicate a role for Atrx in interneuron survival and differentiation.


Assuntos
DNA Helicases/metabolismo , Interneurônios/fisiologia , Deficiência Intelectual Ligada ao Cromossomo X/fisiopatologia , Proteínas Nucleares/metabolismo , Visão Ocular , Adulto , Células Amácrinas/fisiologia , Animais , Sobrevivência Celular , DNA Helicases/genética , Feminino , Expressão Gênica , Humanos , Masculino , Deficiência Intelectual Ligada ao Cromossomo X/embriologia , Deficiência Intelectual Ligada ao Cromossomo X/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteína Nuclear Ligada ao X
3.
Eur J Hum Genet ; 16(2): 192-201, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-17957225

RESUMO

ATRX is a SWI/SNF-like chromatin remodeling protein mutated in several X-linked mental retardation syndromes. Gene inactivation studies in mice demonstrate that ATRX is an essential protein and suggest that patient mutations likely retain partial activity. ATRX associates with the nuclear matrix, pericentromeric heterochromatin, and promyelocytic leukemia nuclear bodies (PML-NBs) in a speckled nuclear staining pattern. Here, we used GFP-ATRX fusion proteins to identify the specific domains of ATRX necessary for subnuclear targeting and the effect of patient mutations on this localization. We identified two functional nuclear localization signals (NLSs) and two domains that target ATRX to nuclear speckles. One of the latter domains is responsible for targeting ATRX to PML-NBs. Surprisingly, this domain encompassed motifs IV-VI of the SNF2 domain suggesting that in addition to chromatin remodeling, it may also have a role in subnuclear targeting. More importantly, four different patient mutations within this domain resulted in an approximately 80% reduction in the number of transfected cells with ATRX nuclear speckles and PML colocalization. These results demonstrate that patient mutations have a dramatic effect on subnuclear targeting to PML-NBs. Moreover, these findings support the hypothesis that ATRX patient mutations represent functional hypomorphs and suggest that loss of proper targeting to PML-NBs is an important contributor to the pathogenesis of the ATR-X syndrome.


Assuntos
Núcleo Celular/genética , DNA Helicases/genética , Corpos de Inclusão Intranuclear/metabolismo , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Deleção de Sequência/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo , Sequência de Aminoácidos , Sequência de Bases , DNA Helicases/metabolismo , Marcação de Genes , Células HeLa , Humanos , Deficiência Intelectual Ligada ao Cromossomo X/genética , Deficiência Intelectual Ligada ao Cromossomo X/patologia , Proteína da Leucemia Promielocítica , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia , Síndrome , Proteína Nuclear Ligada ao X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...