Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 59(23): 9080-9087, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32125060

RESUMO

Poly(phenylacetylene)s are a family of helical polymers constituted by conjugated double bonds. Raman spectra of these polymers show a structural fingerprint of the polyene backbone which, in combination with its helical orientation, makes them good candidates to be studied by Raman optical activity (ROA). Four different well-known poly(phenylacetylene)s adopting different scaffolds and ten different helical senses have been prepared. Raman and ROA spectra were recorded and allowed to establish ROA-spectrum/helical-sense relationships: a left/right-handed orientation of the polyene backbone (Mhelix /Phelix ) produces a triplet of positive/negative ROA bands. Raman and ROA spectra of each polymer exhibited the same profile, and the sign of the ROA spectrum was opposite to the lowest-energy electronic circular dichroism (ECD) band, indicating a resonance effect. Resonance ROA appears then as an indicator of the helical sense of poly(phenylacetylene)s, especially for those with an extra Cotton band in the ECD spectrum, where a wrong helical sense is assigned based on ECD, while ROA alerts of this misassignment.

2.
J Phys Chem Lett ; 9(9): 2266-2270, 2018 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-29652510

RESUMO

Several steps of chiral induction have been detected in poly(phenylacetylene)s among their different hierarchical levels of chirality by vibrational circular dichroism, namely, (i) from the stereogenic centers to the innermost polyacetylene helical covalent backbone (helixint), (ii) from this to the external helix (helixext) formed by the side phenyl pendants that form a complementary helix or counter-helix, and (iii) from this pendant helix to the helical solvation sphere (helixsolv.), the last one being observed along this work. The pendant to polyene backbone chiral induction determines the helical structure adopted by the polymer and therefore the solvation helix. This helical structure is promoted by two mechanisms: steric effects and hydrogen bonding. An important finding concerns the demonstration by VCD of how an achiral solvent becomes chirally organized owing to the template effect of the covalent polymer helices, an effect that is silent to other structural techniques such as ECD or AFM and that hence significantly broadens the scope of these previous analyses.

3.
Chemistry ; 23(32): 7698-7702, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28452090

RESUMO

Tri(4-iodo-2,3,5,6-tetrachlorophenyl)methane (2) is reported as a general building block for the synthesis of various π-conjugated polychlorotriphenylmethyl (PTM) radicals. Three push-pull-type triphenylamine-substituted PTM radicals with different substitution patterns were prepared and all exhibited intense inter-valence charge-transfer bands and large two-photon absorption (TPA) cross sections. Moreover, increase of solvent polarity also resulted in improved TPA response. The charge-transfer character of the relevant excited states provoked the efficient photo-generation of charges, anions in the PTM and cations in the amine arms, driven by the amphoteric redox character and the small coupling between donor and acceptor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...