Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 9: e12164, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34721958

RESUMO

Nutrition is vital for health and immune function in honey bees (Apis mellifera). The effect of diets enriched with bee-associated yeasts and essential oils of Mexican oregano (Lippia graveolens) was tested on survival, food intake, accumulated fat body tissue, and gene expression of vitellogenin (Vg), prophenoloxidase (proPO) and glucose oxidase (GOx) in newly emerged worker bees. The enriched diets were provided to bees under the premise that supplementation with yeasts or essential oils can enhance health variables and the expression of genes related to immune function in worker bees. Based on a standard pollen substitute, used as a control diet, enriched diets were formulated, five with added bee-associated yeasts (Starmerella bombicola, Starmerella etchellsii, Starmerella bombicola 2, Zygosaccharomyces mellis, and the brewers' yeast Saccharomyces cerevisiae) and three with added essential oils from L. graveolens (carvacrol, thymol, and sesquiterpenes). Groups of bees were fed one of the diets for 9 or 12 days. Survival probability was similar in the yeast and essential oils treatments in relation to the control, but median survival was lower in the carvacrol and sesquiterpenes treatments. Food intake was higher in all the yeast treatments than in the control. Fat body percentage in individual bees was slightly lower in all treatments than in the control, with significant decreases in the thymol and carvacrol treatments. Expression of the genes Vg, proPO, and GOx was minimally affected by the yeast treatments but was adversely affected by the carvacrol and thymol treatments.

2.
J Therm Biol ; 89: 102541, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32364969

RESUMO

Though social insects generally seem to have a reduced individual immunoresponse compared to solitary species, the impact of heat stress on that response has not been studied. In the honey bee, the effect of heat stress on reproductives (queens and males/drones) may also vary compared to workers, but this is currently unknown. Here, we quantified the activity of an enzyme linked to the immune response in insects and known to be affected by heat stress in solitary species: phenoloxidase (PO), in workers, queens and drones of Africanized honey bees (AHBs) experimentally subjected to elevated temperatures during the pupal stage. Additionally, we evaluated this marker in individuals experimentally infected with the entomopathogenic fungus Metarhizium anisopliae. Differences in PO activity were found between sexes and castes, with PO activity generally higher in workers and lower in reproductives. Such differences are associated with the likelihood of exposure to infection and the role of different individuals in the colony. Contrary to our expectation, heat stress did not cause an increase in PO activity equally in all classes of individual. Heat stress during the pupal stage significantly decreased the PO activity of AHB queens, but not that of workers or drones, which more frequently engage in extranidal activity. Experimental infection with Metarhizium anisopliae reduced PO activity in queens and workers, but increased it in drones. Notably, heat stressed workers lived significantly shorter after infection despite exhibiting greater PO activity than queens or drones. We suggest that this discrepancy may be related to trade-offs among immune response cascades in honey bees such as between heat shock proteins and defensin peptides used in microbial defence. Our results provide evidence for complex relationships among humoral immune responses in AHBs and suggest that heat stress could result in a reduced life expectancy of individuals.


Assuntos
Abelhas/fisiologia , Resistência à Doença , Resposta ao Choque Térmico , Longevidade , Animais , Abelhas/crescimento & desenvolvimento , Abelhas/imunologia , Abelhas/microbiologia , Proteínas de Insetos/metabolismo , Metarhizium/patogenicidade , Monofenol Mono-Oxigenase/metabolismo , Comportamento Social
3.
J Therm Biol ; 74: 214-225, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29801630

RESUMO

Beekeeping with the western honey bee (Apis mellifera) is important in tropical regions but scant information is available on the possible consequences of global warming for tropical beekeeping. We evaluated the effect of heat stress on developmental stability, the age at onset of foraging (AOF) and longevity in Africanized honey bees (AHBs) in the Yucatan Peninsula of Mexico, one of the main honey producing areas in the Neotropics, where high temperatures occur in spring and summer. To do so, we reared worker AHB pupae under a fluctuating temperature regime, simulating current tropical heatwaves, with a high temperature peak of 40.0 °C for 1 h daily across six days, and compared them to control pupae reared at stable temperatures of 34.0-35.5 °C. Heat stress did not markedly affect overall body size, though the forewing of heat-stressed bees was slightly shorter than controls. However, bees reared under heat stress showed significantly greater fluctuating asymmetry (FA) in forewing shape. Heat stress also decreased AOF and reduced longevity. Our results show that changes occur in the phenotype and behavior of honey bees under heat stress, with potential consequences for colony fitness.


Assuntos
Abelhas , Comportamento Animal , Resposta ao Choque Térmico , Animais , Abelhas/crescimento & desenvolvimento , Tamanho Corporal , Temperatura Alta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...