Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Small ; 20(28): e2307742, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38326101

RESUMO

Biodegradable medical implants promise to benefit patients by eliminating risks and discomfort associated with permanent implantation or surgical removal. The time until full resorption is largely determined by the implant's material composition, geometric design, and surface properties. Implants with a fixed residence time, however, cannot account for the needs of individual patients, thereby imposing limits on personalization. Here, an active Fe-based implant system is reported whose biodegradation is controlled remotely and in situ. This is achieved by incorporating a galvanic cell within the implant. An external and wireless signal is used to activate the on-board electronic circuit that controls the corrosion current between the implant body and an integrated counter electrode. This configuration leads to the accelerated degradation of the implant and allows to harvest electrochemical energy that is naturally released by corrosion. In this study, the electrochemical properties of the Fe-30Mn-1C/Pt galvanic cell model system is first investigated and high-resolution X-ray microcomputed tomography is used to evaluate the galvanic degradation of stent structures. Subsequently, a centimeter-sized active implant prototype is assembled with conventional electronic components and the remotely controlled corrosion is tested in vitro. Furthermore, strategies toward the miniaturization and full biodegradability of this system are presented.


Assuntos
Metais , Corrosão , Metais/química , Microtomografia por Raio-X , Próteses e Implantes , Eletroquímica , Implantes Absorvíveis , Técnicas Eletroquímicas/métodos
3.
Nat Nanotechnol ; 19(4): 494-503, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38172430

RESUMO

Microscale organisms and specialized motile cells use protein-based spring-like responsive structures to sense, grasp and move. Rendering this biomechanical transduction functionality in an artificial micromachine for applications in single-cell manipulations is challenging due to the need for a bio-applicable nanoscale spring system with a large and programmable strain response to piconewton-scale forces. Here we present three-dimensional nanofabrication and monolithic integration, based on an acrylic elastomer photoresist, of a magnetic spring system with quantifiable compliance sensitive to 0.5 pN, constructed with customized elasticity and magnetization distributions at the nanoscale. We demonstrate the effective design programmability of these 'picospring' ensembles as energy transduction mechanisms for the integrated construction of customized soft micromachines, with onboard sensing and actuation functions at the single-cell scale for microrobotic grasping and locomotion. The integration of active soft springs into three-dimensional nanofabrication offers an avenue to create biocompatible soft microrobots for non-disruptive interactions with biological entities.


Assuntos
Locomoção , Projetos de Pesquisa
4.
Small ; 20(23): e2310288, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38150615

RESUMO

Biohybrid micromotors are active microscopic agents consisting of biological and synthetic components that are being developed as novel tools for biomedical applications. By capturing motile sperm cells within engineered microstructures, they can be controlled remotely while being propelled forward by the flagellar beat. This makes them an interesting tool for reproductive medicine that can enable minimally invasive sperm cell delivery to the oocyte in vivo, as a treatment for infertility. The generation of sperm-based micromotors in sufficiently large numbers, as they are required in biomedical applications has been challenging, either due to the employed fabrication techniques or the stability of the microstructure-sperm coupling. Here, biohybrid micromotors, which can be assembled in a fast and simple process using magnetic microparticles, are presented. These magnetotactic sperm cells show a high motility and swimming speed and can be transferred between different environments without large detrimental effects on sperm motility and membrane integrity. Furthermore, clusters of micromotors are assembled magnetically and visualized using dual ultrasound (US)/photoacoustic (PA) imaging. Finally, a protocol for the scaled-up assembly of micromotors and their purification for use in in vitro fertilization (IVF) is presented, bringing them closer to their biomedical implementation.


Assuntos
Motilidade dos Espermatozoides , Espermatozoides , Espermatozoides/fisiologia , Masculino , Motilidade dos Espermatozoides/fisiologia , Técnicas de Reprodução Assistida , Humanos , Magnetismo , Animais
5.
Biosens Bioelectron ; 236: 115362, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37300901

RESUMO

Pandemics as the one we are currently facing, where fast-spreading viruses present a threat to humanity, call for simple and reliable methods to perform early diagnosis, enabling detection of very low pathogen loads even before symptoms start showing in the host. So far, standard polymerase chain reaction (PCR) is the most reliable method for doing so, but it is rather slow and needs specialized reagents and trained personnel to operate it. Additionally, it is expensive and not easily accessible. Therefore, developing miniaturized and portable sensors which perform early detection of pathogens with high reliability is necessary to not only prevent the spreading of the disease but also to monitor the effectiveness of the developed vaccines and the appearance of new pathogenic variants. Thus, in this work we develop a sensitive microfluidic impedance biosensor for the direct detection of SARS-CoV-2, towards a mobile point-of-care (POC) platform. The operational parameters are optimized with the aid of design-of-experiment (DoE), for an accurate detection of the viral antigens using electrochemical impedance spectroscopy (EIS). We perform the biodetection of buffer samples spiked with fM concentration levels and validate the biosensor in a clinical context of relevance by analyzing 15 real patient samples up to a Ct value (cycle threshold) of 27. Finally, we demonstrate the versatility of the developed platform using different settings, including a small portable potentiostat, using multiple channels for self-validation, as well as with single biosensors for a smartphone-based readout. This work contributes to the rapid and reliable diagnostics of COVID-19 and can be extended to other infectious diseases, allowing the monitoring of viral load in vaccinated and unvaccinated people to anticipate a potential relapse of the disease.


Assuntos
Técnicas Biossensoriais , COVID-19 , Humanos , SARS-CoV-2 , COVID-19/diagnóstico , Microfluídica , Impedância Elétrica , Reprodutibilidade dos Testes , Técnicas Biossensoriais/métodos
6.
ACS Nano ; 17(10): 8899-8917, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37141496

RESUMO

With the development of advanced biomedical theragnosis and bioengineering tools, smart and soft responsive microstructures and nanostructures have emerged. These structures can transform their body shape on demand and convert external power into mechanical actions. Here, we survey the key advances in the design of responsive polymer-particle nanocomposites that led to the development of smart shape-morphing microscale robotic devices. We overview the technological roadmap of the field and highlight the emerging opportunities in programming magnetically responsive nanomaterials in polymeric matrixes, as magnetic materials offer a rich spectrum of properties that can be encoded with various magnetization information. The use of magnetic fields as a tether-free control can easily penetrate biological tissues. With the advances in nanotechnology and manufacturing techniques, microrobotic devices can be realized with the desired magnetic reconfigurability. We emphasize that future fabrication techniques will be the key to bridging the gaps between integrating sophisticated functionalities of nanoscale materials and reducing the complexity and footprints of microscale intelligent robots.

7.
Nat Commun ; 14(1): 728, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759511

RESUMO

Medical microrobotics is an emerging field that aims at non-invasive diagnosis and therapy inside the human body through miniaturized sensors and actuators. Such microrobots can be tethered (e.g., smart microcatheters, microendoscopes) or untethered (e.g., cell-based drug delivery systems). Active motion and multiple functionalities, distinguishing microrobots from mere passive carriers and conventional nanomedicines, can be achieved through external control with physical fields such as magnetism or ultrasound. Here we give an overview of the key challenges in the field of assisted reproduction and how these new technologies could, in the future, enable assisted fertilization in vivo and enhance embryo implantation. As a case study, we describe a potential intervention in the case of recurrent embryo implantation failure, which involves the non-invasive delivery of an early embryo back to the fertilization site using magnetically-controlled microrobots. As the embryo will be in contact with the secretory oviduct fluid, it can develop under natural conditions and in synchrony with the endometrium preparation. We discuss the potential microrobot designs, including a proper selection of materials and processes, envisioning their translation from bench to animal studies and human medicine. Finally, we highlight regulatory and ethical considerations for bringing this technology to the clinic.


Assuntos
Medicina Reprodutiva , Robótica , Animais , Feminino , Humanos , Reprodução , Nanomedicina , Tecnologia
8.
J Microbio Robot ; 19(1-2): 37-45, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38161388

RESUMO

Micro-and nanorobots have the potential to perform non-invasive drug delivery, sensing, and surgery in living organisms, with the aid of diverse medical imaging techniques. To perform such actions, microrobots require high spatiotemporal resolution tracking with real-time closed-loop feedback. To that end,  photoacoustic imaging has appeared as a promising technique for imaging microrobots in deep tissue with higher molecular specificity and contrast. Here, we present different strategies to track magnetically-driven micromotors with improved contrast and specificity using dedicated contrast agents (Au nanorods and nanostars). Furthermore, we discuss the possibility of improving the light absorption properties of the employed nanomaterials considering possible light scattering and coupling to the underlying metal-oxide layers on the micromotor's surface. For that, 2D COMSOL simulation and experimental results were correlated, confirming that an increased spacing between the Au-nanostructures and the increase of thickness of the underlying oxide layer lead to enhanced light absorption and preservation of the characteristic absorption peak. These characteristics are important when visualizing the micromotors in a complex in vivo environment, to distinguish them from the light absorption properties of the surrounding natural chromophores. Supplementary Information: The online version contains supplementary material available at 10.1007/s12213-023-00156-7.

9.
Adv Mater ; 34(50): e2204257, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36189842

RESUMO

Remotely controllable microrobots are appealing for various biomedical in vivo applications. In particular, in recent years, our group has focused on developing sperm-microcarriers to assist sperm cells with motion deficiencies or low sperm count (two of the most prominent male infertility problems) to reach the oocyte toward in-vivo-assisted fertilization. Different sperm carriers, considering their motion in realistic media and confined environments, have been optimized. However, the already-reported sperm carriers have been mainly designed to transport single sperm cell, with limited functionality. Thus, to take a step forward, here, the development of a 4D-printed multifunctional microcarrier containing soft and smart materials is reported. These microcarriers can not only transport and deliver multiple motile sperm cells, but also release heparin and mediate local enzymatic reactions by hyaluronidase-loaded polymersomes (HYAL-Psomes). These multifunctional facets enable in situ sperm capacitation/hyperactivation, and the local degradation of the cumulus complex that surrounds the oocyte, both to facilitate the sperm-oocyte interaction for the ultimate goal of in vivo assisted fertilization.


Assuntos
Sêmen , Espermatozoides , Masculino , Animais , Espermatozoides/metabolismo , Interações Espermatozoide-Óvulo/fisiologia , Capacitação Espermática/fisiologia , Oócitos/metabolismo
10.
Prog Mol Biol Transl Sci ; 187(1): 295-333, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35094779

RESUMO

The ability to monitor molecular targets is crucial in fields ranging from healthcare to industrial processing to environmental protection. Devices employing biomolecules to achieve this goal are called biosensors. Over the last half century researchers have developed dozens of different biosensor approaches. In this chapter we analyze recent advances in the biosensing field aiming at adapting these to the problem of continuous molecular monitoring in complex sample streams, and how the merging of these sensors with lab-on-a-chip technologies would be beneficial to both. To do so we discuss (1) the components that comprise a biosensor, (2) the challenges associated with continuous molecular monitoring in complex sample streams, (3) how different sensing strategies deal with (or fail to deal with) these challenges, and (4) the implementation of these technologies into lab-on-a-chip architectures.


Assuntos
Técnicas Biossensoriais , Dispositivos Lab-On-A-Chip , Biomarcadores , Humanos
11.
Sci Adv ; 7(51): eabl5408, 2021 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-34919439

RESUMO

Existing electronically integrated catheters rely on the manual assembly of separate components to integrate sensing and actuation capabilities. This strongly impedes their miniaturization and further integration. Here, we report an electronically integrated self-assembled microcatheter. Electronic components for sensing and actuation are embedded into the catheter wall through the self-assembly of photolithographically processed polymer thin films. With a diameter of only about 0.1 mm, the catheter integrates actuated digits for manipulation and a magnetic sensor for navigation and is capable of targeted delivery of liquids. Fundamental functionalities are demonstrated and evaluated with artificial model environments and ex vivo tissue. Using the integrated magnetic sensor, we develop a strategy for the magnetic tracking of medical tools that facilitates basic navigation with a high resolution below 0.1 mm. These highly flexible and microsized integrated catheters might expand the boundary of minimally invasive surgery and lead to new biomedical applications.

12.
Sci Adv ; 7(44): eabj0767, 2021 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-34705511

RESUMO

Oscillations at several hertz are a key feature of dynamic behavior of various biological entities, such as the pulsating heart, firing neurons, or the sperm-beating flagellum. Inspired by nature's fundamental self-oscillations, we use electroactive polymer microactuators and three-dimensional microswitches to create a synthetic electromechanical parametric relaxation oscillator (EMPRO) that relies on the shape change of micropatterned polypyrrole and generates a rhythmic motion at biologically relevant stroke frequencies of up to ~95 Hz. We incorporate an Ag-Mg electrochemical battery into the EMPRO for autonomous operation in a nontoxic environment. Such a self-sufficient self-oscillating microsystem offers new opportunities for artificial life at low Reynolds numbers by, for instance, mimicking and replacing nature's propulsion and pumping units.

13.
Nat Commun ; 12(1): 4967, 2021 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-34426576

RESUMO

Today's smallest energy storage devices for in-vivo applications are larger than 3 mm3 and lack the ability to continuously drive the complex functions of smart dust electronic and microrobotic systems. Here, we create a tubular biosupercapacitor occupying a mere volume of 1/1000 mm3 (=1 nanoliter), yet delivering up to 1.6 V in blood. The tubular geometry of this nano-biosupercapacitor provides efficient self-protection against external forces from pulsating blood or muscle contraction. Redox enzymes and living cells, naturally present in blood boost the performance of the device by 40% and help to solve the self-discharging problem persistently encountered by miniaturized supercapacitors. At full capacity, the nano-biosupercapacitors drive a complex integrated sensor system to measure the pH-value in blood. This demonstration opens up opportunities for next generation intravascular implants and microrobotic systems operating in hard-to-reach small spaces deep inside the human body.


Assuntos
Técnicas Biossensoriais , Sangue/metabolismo , Capacitância Elétrica , Nanopartículas/química , Animais , Cães , Eletroquímica , Eletrodos , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Células Madin Darby de Rim Canino , Temperatura
14.
Adv Healthc Mater ; 10(22): e2101077, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34382354

RESUMO

The fast evolution of medical micro- and nanorobots in the endeavor to perform non-invasive medical operations in living organisms has boosted the use of diverse medical imaging techniques in the last years. Among those techniques, photoacoustic imaging (PAI), considered a functional technique, has shown to be promising for the visualization of micromotors in deep tissue with high spatiotemporal resolution as it possesses the molecular specificity of optical methods and the penetration depth of ultrasound. However, the precise maneuvering and function's control of medical micromotors, in particular in living organisms, require both anatomical and functional imaging feedback. Therefore, herein, the use of high-frequency ultrasound and PAI is reported to obtain anatomical and molecular information, respectively, of magnetically-driven micromotors in vitro and under ex vivo tissues. Furthermore, the steerability of the micromotors is demonstrated by the action of an external magnetic field into the uterus and bladder of living mice in real-time, being able to discriminate the micromotors' signal from one of the endogenous chromophores by multispectral analysis. Finally, the successful loading and release of a model cargo by the micromotors toward non-invasive in vivo medical interventions is demonstrated.


Assuntos
Diagnóstico por Imagem , Técnicas Fotoacústicas , Animais , Camundongos , Ultrassonografia
15.
Eur Phys J E Soft Matter ; 44(5): 67, 2021 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-33974155

RESUMO

Sperm-driven micromotors, consisting of a single sperm cell captured in a microcap, utilize the strong propulsion generated by the flagellar beat of motile spermatozoa for locomotion. It enables the movement of such micromotors in biological media, while being steered remotely by means of an external magnetic field. The substantial decrease in swimming speed, caused by the additional hydrodynamic load of the microcap, limits the applicability of sperm-based micromotors. Therefore, to improve the performance of such micromotors, we first investigate the effects of additional cargo on the flagellar beat of spermatozoa. We designed two different kinds of microcaps, which each result in different load responses of the flagellar beat. As an additional design feature, we constrain rotational degrees of freedom of the cell's motion by modifying the inner cavity of the cap. Particularly, cell rolling is substantially reduced by tightly locking the sperm head inside the microcap. Likewise, cell yawing is decreased by aligning the micromotors under an external static magnetic field. The observed differences in swimming speed of different micromotors are not so much a direct consequence of hydrodynamic effects, but rather stem from changes in flagellar bending waves, hence are an indirect effect. Our work serves as proof-of-principle that the optimal design of microcaps is key for the development of efficient sperm-driven micromotors.


Assuntos
Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Constrição , Fertilização , Humanos , Hidrodinâmica , Masculino , Modelos Biológicos , Transdução de Sinais , Natação
16.
Small ; 17(12): e2006449, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33615690

RESUMO

Different propulsion mechanisms have been suggested for describing the motion of a variety of chemical micromotors, which have attracted great attention in the last decades due to their high efficiency and thrust force, enabling several applications in the fields of environmental remediation and biomedicine. Bubble-recoil based motion, in particular, has been modeled by three different phenomena: capillary forces, bubble growth, and bubble expulsion. However, these models have been suggested independently based on a single influencing factor (i.e., viscosity), limiting the understanding of the overall micromotor performance. Therefore, the combined effect of medium viscosity, surface tension, and fuel concentration is analyzed on the micromotor swimming ability, and the dominant propulsion mechanisms that describe its motion more accurately are identified. Using statistically relevant experimental data, a holistic theoretical model is proposed for bubble-propelled tubular catalytic micromotors that includes all three above-mentioned phenomena and provides deeper insights into their propulsion physics toward optimized geometries and experimental conditions.


Assuntos
Recuperação e Remediação Ambiental , Catálise , Movimento (Física)
17.
Small ; 17(12): e2005527, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33599055

RESUMO

Titanium and its alloys are frequently used to replace structural components of the human body due to their high mechanical strength, low stiffness, and biocompatibility. In particular, the use of porous materials has improved implant stabilization and the promotion of bone. However, it remains unclear which material properties and geometrical cues are optimal for a proper osteoinduction and osseointegration. To that end, transparent tubular microscaffolds are fabricated, mimicking the typical pores of structural implants, with the aim of studying early bone formation and cell-material interactions at the single cell level. Here, a ß-stabilized alloy Ti-45Nb (wt%) is used for the microscaffold's fabrication due to its elastic modulus close to that of natural bone. Human mesenchymal stem cell migration, adhesion, and osteogenic differentiation is thus investigated, paying particular attention to the CaP formation and cell-body crystallization, both analyzed via optical and electron microscopy. It is demonstrated that the developed platform is suited for the long-term study of living single cells in an appropriate microenvironment, obtaining in the process deeper insights on early bone formation and providing cues to improve the stability and biocompatibility of current structural implants.


Assuntos
Materiais Biocompatíveis , Osteogênese , Ligas , Humanos , Teste de Materiais , Óxidos , Titânio
18.
Small ; 17(5): e2002549, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33448115

RESUMO

Analytical platforms based on impedance spectroscopy are promising for non-invasive and label-free analysis of single cells as well as of their extracellular matrix, being essential to understand cell function in the presence of certain diseases. Here, an innovative rolled-up impedimetric microfulidic sensor, called sensor-in-a-tube, is introduced for the simultaneous analysis of single human monocytes CD14+ and their extracellular medium upon liposaccharides (LPS)-mediated activation. In particular, rolled-up platinum microelectrodes are integrated within for the static and dynamic (in-flow) detection of cells and their surrounding medium (containing expressed cytokines) over an excitation frequency range from 102 to 5 × 106  Hz. The correspondence between cell activation stages and the electrical properties of the cell surrounding medium have been detected by electrical impedance spectroscopy in dynamic mode without employing electrode surface functionalization or labeling. The designed sensor-in-a-tube platform is shown as a sensitive and reliable tool for precise single cell analysis toward immune-deficient diseases diagnosis.


Assuntos
Técnicas Biossensoriais , Técnicas Analíticas Microfluídicas , Espectroscopia Dielétrica , Impedância Elétrica , Humanos , Microeletrodos , Microfluídica , Análise de Célula Única
19.
Nat Commun ; 11(1): 5618, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-33154372

RESUMO

Systemic chemotherapy remains the backbone of many cancer treatments. Due to its untargeted nature and the severe side effects it can cause, numerous nanomedicine approaches have been developed to overcome these issues. However, targeted delivery of therapeutics remains challenging. Engineering microrobots is increasingly receiving attention in this regard. Their functionalities, particularly their motility, allow microrobots to penetrate tissues and reach cancers more efficiently. Here, we highlight how different microrobots, ranging from tailor-made motile bacteria and tiny bubble-propelled microengines to hybrid spermbots, can be engineered to integrate sophisticated features optimised for precision-targeting of a wide range of cancers. Towards this, we highlight the importance of integrating clinicians, the public and cancer patients early on in the development of these novel technologies.


Assuntos
Sistemas de Liberação de Medicamentos , Neoplasias/tratamento farmacológico , Robótica , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Portadores de Fármacos/farmacologia , Humanos , Comunicação Interdisciplinar , Nanomedicina , Robótica/classificação
20.
Adv Sci (Weinh) ; 7(18): 2000843, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32999835

RESUMO

Embryo transfer (ET) is a decisive step in the in vitro fertilization process. In most cases, the embryo is transferred to the uterus after several days of in vitro culture. Although studies have identified the beneficial effects of ET on proper embryo development in the earlier stages, this strategy is compromised by the necessity to transfer early embryos (zygotes) back to the fallopian tube instead of the uterus, which requires a more invasive, laparoscopic procedure, termed zygote intrafallopian transfer (ZIFT). Magnetic micromotors offer the possibility to mitigate such surgical interventions, as they have the potential to transport and deliver cellular cargo such as zygotes through the uterus and fallopian tube noninvasively, actuated by an externally applied rotating magnetic field. This study presents the capture, transport, and release of bovine and murine zygotes using two types of magnetic micropropellers, helix and spiral. Although helices represent an established micromotor architecture, spirals surpass them in terms of motion performance and with their ability to reliably capture and secure the cargo during both motion and transfer between different environments. Herein, this is demonstrated with murine oocytes/zygotes as the cargo; this is the first step toward the application of noninvasive, magnetic micromotor-assisted ZIFT.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...