Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Physiol Lung Cell Mol Physiol ; 316(5): L723-L737, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30652491

RESUMO

Secreted exosomes are bioactive particles that elicit profound responses in target cells. Using targeted metabolomics and global microarray analysis, we identified a role of exosomes in promoting mitochondrial function in the context of pulmonary arterial hypertension (PAH). Whereas chronic hypoxia results in a glycolytic shift in pulmonary artery smooth muscle cells (PASMCs), exosomes restore energy balance and improve O2 consumption. These results were confirmed in a hypoxia-induced mouse model and a semaxanib/hypoxia rat model of PAH wherein exosomes improved the mitochondrial dysfunction associated with disease. Importantly, exosome exposure increased PASMC expression of pyruvate dehydrogenase (PDH) and glutamate dehydrogenase 1 (GLUD1), linking exosome treatment to the TCA cycle. Furthermore, we show that although prolonged hypoxia induced sirtuin 4 expression, an upstream inhibitor of both GLUD1 and PDH, exosomes reduced its expression. These data provide direct evidence of an exosome-mediated improvement in mitochondrial function and contribute new insights into the therapeutic potential of exosomes in PAH.


Assuntos
Exossomos/metabolismo , Exossomos/transplante , Células-Tronco Mesenquimais/metabolismo , Hipertensão Arterial Pulmonar/metabolismo , Hipertensão Arterial Pulmonar/terapia , Animais , Células Cultivadas , Ciclo do Ácido Cítrico , Modelos Animais de Doenças , Glutamato Desidrogenase/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias Musculares/metabolismo , Modelos Biológicos , Miócitos de Músculo Liso/metabolismo , Artéria Pulmonar/metabolismo , Complexo Piruvato Desidrogenase/metabolismo , Ratos , Ratos Sprague-Dawley , Sirtuínas/metabolismo
2.
Aging Cell ; 9(2): 203-19, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20089117

RESUMO

Telomerase is a reverse transcriptase specialized in telomere synthesis. The enzyme is primarily nuclear where it elongates telomeres, but many reports show that the catalytic component of telomerase (in humans called hTERT) also localizes outside of the nucleus, including in mitochondria. Shuttling of hTERT between nucleus and cytoplasm and vice versa has been reported, and different proteins shown to regulate such translocation. Exactly why telomerase moves between subcellular compartments is still unclear. In this study we report that mutations that disrupt the nuclear export signal (NES) of hTERT render it nuclear but unable to immortalize cells despite retention of catalytic activity in vitro. Overexpression of the mutant protein in primary fibroblasts is associated with telomere-based cellular senescence, multinucleated cells and the activation of the DNA damage response genes ATM, Chk2 and p53. Mitochondria function is also impaired in the cells. We find that cells expressing the mutant hTERT produce high levels of mitochondrial reactive oxygen species and have damage in telomeric and extratelomeric DNA. Dysfunctional mitochondria are also observed in an ALT (alternative lengthening of telomeres) cell line that is insensitive to growth arrest induced by the mutant hTERT showing that mitochondrial impairment is not a consequence of the growth arrest. Our data indicate that mutations involving the NES of hTERT are associated with defects in telomere maintenance, mitochondrial function and cellular growth, and suggest targeting this region of hTERT as a potential new strategy for cancer treatment.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Mitocôndrias/enzimologia , Mutação , Telomerase/metabolismo , Transporte Ativo do Núcleo Celular , Sequência de Aminoácidos , Biocatálise , Linhagem Celular , Sobrevivência Celular , Senescência Celular , Diploide , Humanos , Microscopia Eletrônica , Mitocôndrias/ultraestrutura , Dados de Sequência Molecular , Telomerase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...