Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Anim Sci ; 97(12): 4999-5008, 2019 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-31740932

RESUMO

Enteric methane (CH4) emissions are not only an important source of greenhouse gases but also a loss of dietary energy in livestock. Corn oil (CO) is rich in unsaturated fatty acid with >50% PUFA, which may enhance ruminal biohydrogenation of unsaturated fatty acids, leading to changes in ruminal H2 metabolism and methanogenesis. The objective of this study was to investigate the effect of CO supplementation of a diet on CH4 emissions, nutrient digestibility, ruminal dissolved gases, fermentation, and microbiota in goats. Six female goats were used in a crossover design with two dietary treatments, which included control and CO supplementation (30 g/kg DM basis). CO supplementation did not alter total-tract organic matter digestibility or populations of predominant ruminal fibrolytic microorganisms (protozoa, fungi, Ruminococcus albus, Ruminococcus flavefaciens, and Fibrobacter succinogenes), but reduced enteric CH4 emissions (g/kg DMI, -15.1%, P = 0.003). CO supplementation decreased ruminal dissolved hydrogen (dH2, P < 0.001) and dissolved CH4 (P < 0.001) concentrations, proportions of total unsaturated fatty acids (P < 0.001) and propionate (P = 0.015), and increased proportions of total SFAs (P < 0.001) and acetate (P < 0.001), and acetate to propionate ratio (P = 0.038) in rumen fluid. CO supplementation decreased relative abundance of family Bacteroidales_BS11_gut_group (P = 0.032), increased relative abundance of family Rikenellaceae (P = 0.021) and Lachnospiraceae (P = 0.025), and tended to increase relative abundance of genus Butyrivibrio_2 (P = 0.06). Relative abundance (P = 0.09) and 16S rRNA gene copies (P = 0.043) of order Methanomicrobiales, and relative abundance of genus Methanomicrobium (P = 0.09) also decreased with CO supplementation, but relative abundance (P = 0.012) and 16S rRNA gene copies (P = 0.08) of genus Methanobrevibacter increased. In summary, CO supplementation increased rumen biohydrogenatation by facilitating growth of biohydrogenating bacteria of family Lachnospiraceae and genus Butyrivibrio_2 and may have enhanced reductive acetogenesis by facilitating growth of family Lachnospiraceae. In conclusion, dietary supplementation of CO led to a shift of fermentation pathways that enhanced acetate production and decreased rumen dH2 concentration and CH4 emissions.


Assuntos
Óleo de Milho/administração & dosagem , Dieta/veterinária , Suplementos Nutricionais , Cabras/metabolismo , Metano/biossíntese , Rúmen/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Óleo de Milho/metabolismo , Feminino , Fermentação , Fibrobacter , Microbioma Gastrointestinal/efeitos dos fármacos , Hidrogênio/metabolismo , Microbiota/efeitos dos fármacos , Microbiota/fisiologia , RNA Ribossômico 16S/metabolismo
2.
Artigo em Inglês | MEDLINE | ID: mdl-30680191

RESUMO

BACKGROUND: Urea pretreatment is an efficient strategy to improve fiber digestibility of low quality roughages for ruminants. Nitrate and oil are usually used to inhibit enteric methane (CH4) emissions from ruminants. The objective of this study was to examine the combined effects of urea plus nitrate pretreated rice straw and corn oil supplementation to the diet on nutrient digestibility, nitrogen (N) balance, CH4 emissions, ruminal fermentation characteristics and microbiota in goats. Nine female goats were used in a triple 3 × 3 Latin Square design (27 d periods). The treatments were: control (untreated rice straw, no added corn oil), rice straw pretreated with urea and nitrate (34 and 4.7 g/kg of rice straw on a dry matter [DM] basis, respectively, UN), and UN diet supplemented with corn oil (15 g/kg soybean and 15 g/kg corn were replaced by 30 g/kg corn oil, DM basis, UNCO). RESULTS: Compared with control, UN increased neutral detergent fiber (NDF) digestibility (P < 0.001) and copies of protozoa (P < 0.001) and R. albus (P < 0.05) in the rumen, but decreased N retention (-21.2%, P < 0.001), dissolved hydrogen concentration (-22.8%, P < 0.001), molar proportion of butyrate (-18.2%, P < 0.05), (acetate + butyrate) to propionate ratio (P < 0.05) and enteric CH4 emissions (-10.2%, P < 0.05). In comparison with UN, UNCO increased N retention (+34.9%, P < 0.001) and decreased copies of protozoa (P < 0.001) and methanogens (P < 0.001). Compared with control, UNCO increased NDF digestibility (+8.3%, P < 0.001), reduced ruminal dissolved CH4 concentration (-24.4%, P < 0.001) and enteric CH4 emissions (-12.6%, P < 0.05). CONCLUSIONS: A combination of rice straw pretreated with urea plus nitrate and corn oil supplementation of the diet improved fiber digestibility and lowered enteric CH4 emissions without negative effects on N retention. These strategies improved the utilization of rice straw by goats.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...