Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38359084

RESUMO

Infectious diseases threaten endangered species, particularly in small isolated populations. Seabird populations on the remote Amsterdam Island in the Indian Ocean have been in decline for the past three decades, with avian cholera caused by Pasteurella multocida proposed as the primary driver. However, Erysipelothrix species have also been sporadically detected from albatrosses on Amsterdam Island and may be contributing to some of the observed mortality. In this study, we genomically characterized 16 Erysipelothrix species isolates obtained from three Indian yellow-nosed albatross (Thalassarche carteri) chick carcasses in 2019. Histological analyses suggest that they died of bacterial septicaemia. Two isolates were sequenced using both Illumina short-read and MinION long-read approaches, which - following hybrid assembly - resulted in closed circular genomes. Mapping of Illumina reads from the remaining isolates to one of these new reference genomes revealed that all 16 isolates were closely related, with a maximum of 13 nucleotide differences distinguishing any pair of isolates. The nucleotide diversity of isolates obtained from the same or different carcasses was similar, suggesting all three chicks were likely infected from a common source. These genomes were compared with a global collection of genomes from Erysipelothrix rhusiopathiae and other species from the same genus. The isolates from albatrosses were phylogenetically distinct, sharing a most recent common ancestor with E. rhusiopathiae. Based on phylogenomic analysis and standard thresholds for average nucleotide identity and digital DNA-DNA hybridization, these isolates represent a novel Erysipelothrix species, for which we propose the name Erysipelothrix amsterdamensis sp. nov. The type strain is A18Y020dT (=CIP 112216T=DSM 115297T). The implications of this bacterium for albatross conservation will require further study.


Assuntos
Erysipelothrix , Animais , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Filogenia , RNA Ribossômico 16S/genética , Composição de Bases , Galinhas , Nucleotídeos
2.
Eur J Med Chem ; 258: 115593, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37390508

RESUMO

17ß-hydroxysteroid dehydrogenase type 10 (17ß-HSD10) is a multifunctional mitochondrial enzyme and putative drug target for the treatment of various pathologies including Alzheimer's disease or some types of hormone-dependent cancer. In this study, a series of new benzothiazolylurea-based inhibitors were developed based on the structure-activity relationship (SAR) study of previously published compounds and predictions of their physico-chemical properties. This led to the identification of several submicromolar inhibitors (IC50 ∼0.3 µM), the most potent compounds within the benzothiazolylurea class known to date. The positive interaction with 17ß-HSD10 was further confirmed by differential scanning fluorimetry and the best molecules were found to be cell penetrable. In addition, the best compounds weren't found to have additional effects for mitochondrial off-targets and cytotoxic or neurotoxic effects. The two most potent inhibitors 9 and 11 were selected for in vivo pharmacokinetic study after intravenous and peroral administration. Although the pharmacokinetic results were not fully conclusive, it seemed that compound 9 was bioavailable after peroral administration and could penetrate into the brain (brain-plasma ratio 0.56).


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/tratamento farmacológico , Relação Estrutura-Atividade , 17-Hidroxiesteroide Desidrogenases , Encéfalo/metabolismo , Inibidores Enzimáticos/química
3.
Front Microbiol ; 14: 1147846, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37180238

RESUMO

The occurrence of colistin resistance has increased rapidly among Enterobacterales around the world. We performed a national survey of plasmid-mediated colistin resistance in human clinical isolates through a retrospective analysis of samples from 2009 to 2017 and a prospective sampling in 2018-2020. The aim of this study was to identify and characterize isolates with mcr genes from various regions of the Czech Republic using whole genome sequencing (WGS). Of all 1932 colistin-resistant isolates analyzed, 73 (3.8%) were positive for mcr genes. Most isolates carried mcr-1 (48/73) and were identified as Escherichia coli (n = 44) and Klebsiella pneumoniae (n = 4) of various sequence types (ST). Twenty-five isolates, including Enterobacter spp. (n = 24) and Citrobacter freundii (n = 1) carrying the mcr-9 gene were detected; three of them (Enterobacter kobei ST54) co-harbored the mcr-4 and mcr-9 genes. Multi-drug resistance phenotype was a common feature of mcr isolates and 14% (10/73) isolates also co-harbored clinically important beta-lactamases, including two isolates with carbapenemases KPC-2 and OXA-48. Phylogenetic analysis of E. coli ST744, the dominant genotype in this study, with the global collection showed Czech isolates belonged to two major clades, one containing isolates from Europe, while the second composed of isolates from diverse geographical areas. The mcr-1 gene was carried by IncX4 (34/73, 47%), IncHI2/ST4 (6/73, 8%) and IncI2 (8/73, 11%) plasmid groups. Small plasmids belonging to the ColE10 group were associated with mcr-4 in three isolates, while mcr-9 was carried by IncHI2/ST1 plasmids (4/73, 5%) or the chromosome (18/73, 25%). We showed an overall low level of occurrence of mcr genes in colistin-resistant bacteria from human clinical samples in the Czech Republic.

4.
J Antimicrob Chemother ; 77(11): 2960-2963, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35880751

RESUMO

OBJECTIVES: To investigate the fitness effects of large blaCTX-M-15-harbouring F2:A1:B- plasmids on their native Escherichia coli ST131 H30Rx hosts. METHODS: We selected five E. coli ST131 H30Rx isolates of diverse origin, each carrying an F2:A1:B- plasmid with the blaCTX-M-15 gene. The plasmid was eliminated from each isolate by displacement using an incompatible curing plasmid, pMDP5_cureEC958. WGS was performed to obtain complete chromosome and plasmid sequences of original isolates and to detect chromosomal mutations in 'cured' clones. High-throughput competition assays were conducted to determine the relative fitness of cured clones compared with the corresponding original isolates. RESULTS: We were able to successfully eliminate the F2:A1:B- plasmids from all five original isolates using pMDP5_cureEC958. The F2:A1:B- plasmids produced non-significant fitness effects in three isolates and moderate reductions in relative fitness (3%-4%) in the two remaining isolates. CONCLUSIONS: We conclude that F2:A1:B- plasmids pose low fitness costs in their E. coli ST131 H30Rx hosts. This plasmid-host fitness compatibility is likely to promote the maintenance of antibiotic resistance in this clinically important E. coli lineage.


Assuntos
Infecções por Escherichia coli , Escherichia coli , Humanos , Escherichia coli/genética , beta-Lactamases/genética , beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Plasmídeos/genética
5.
mSphere ; 7(4): e0023822, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35862807

RESUMO

Escherichia coli sequence type 963 (ST963) is a neglected lineage closely related to ST38, a globally widespread extraintestinal pathogenic ST causing urinary tract infections (UTI) as well as sepsis in humans. Our current study aimed to improve the knowledge of this understudied ST by carrying out a comprehensive comparative analysis of whole-genome sequencing data consisting of 31 isolates from silver gulls in Australia along with another 80 genomes from public resources originating from geographically scattered regions. ST963 was notable for carriage of cephalosporinase gene blaCMY-2, which was identified in 99 isolates and was generally chromosomally encoded. ST963 isolates showed otherwise low carriage of antibiotic resistance genes, in contrast with the closely related E. coli ST38. We found considerable phylogenetic variability among international ST963 isolates (up to 11,273 single nucleotide polymorphisms [SNPs]), forming three separate clades. A major clade that often differed by 20 SNPs or less consisted of Australian isolates of both human and animal origin, providing evidence of zoonotic or zooanthropogenic transmission. There was a high prevalence of virulence F29:A-:B10 pUTI89-like plasmids within E. coli ST963 (n = 88), carried especially by less variable isolates exhibiting ≤1,154 SNPs. We characterized a novel 115,443-bp pUTI89-like plasmid, pCE2050_A, that carried a traS:IS5 insertion absent from pUTI89. Since IS5 was also present in a transposition unit bearing blaCMY-2 on chromosomes of ST963 strains, IS5 insertion into pUTI89 may enable mobilization of the blaCMY-2 gene from the chromosome/transposition unit to pUTI89 via homologous recombination. IMPORTANCE We have provided the first comprehensive genomic study of E. coli ST963 by analyzing various genomic and phenotypic data sets of isolates from Australian silver gulls and comparison with genomes from geographically dispersed regions of human and animal origin. Our study suggests the emergence of a specific blaCMY-2-carrying E. coli ST963 clone in Australia that is widely spread across the continent by humans and birds. Genomic analysis has revealed that ST963 is a globally dispersed lineage with a remarkable set of virulence genes and virulence plasmids described in uropathogenic E. coli. While ST963 separated into three clusters, a unique specific clade of Australian ST963 isolates harboring a chromosomal copy of AmpC ß-lactamase encoding the gene blaCMY-2 and originating from both humans and wild birds was identified. This phylogenetically close cluster comprised isolates of both animal and human origin, thus providing evidence of interspecies zoonotic transmission. The analysis of the genetic environment of the AmpC ß-lactamase-encoding gene highlighted ongoing evolutionary events that shape the carriage of this gene in ST963.


Assuntos
Charadriiformes , Infecções por Escherichia coli , Escherichia coli , Animais , Austrália , Charadriiformes/microbiologia , Escherichia coli/genética , Infecções por Escherichia coli/transmissão , Infecções por Escherichia coli/veterinária , Humanos , Filogenia
6.
Microb Genom ; 8(2)2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35188453

RESUMO

Genomic sequencing has revolutionized our understanding of bacterial disease epidemiology, but remains underutilized for zoonotic pathogens in remote endemic settings. Anthrax, caused by the spore-forming bacterium Bacillus anthracis, remains a threat to human and animal health and rural livelihoods in low- and middle-income countries. While the global genomic diversity of B. anthracis has been well-characterized, there is limited information on how its populations are genetically structured at the scale at which transmission occurs, critical for understanding the pathogen's evolution and transmission dynamics. Using a uniquely rich dataset, we quantified genome-wide SNPs among 73 B. anthracis isolates derived from 33 livestock carcasses sampled over 1 year throughout the Ngorongoro Conservation Area, Tanzania, a region hyperendemic for anthrax. Genome-wide SNPs distinguished 22 unique B. anthracis genotypes (i.e. SNP profiles) within the study area. However, phylogeographical structure was lacking, as identical SNP profiles were found throughout the study area, likely the result of the long and variable periods of spore dormancy and long-distance livestock movements. Significantly, divergent genotypes were obtained from spatio-temporally linked cases and even individual carcasses. The high number of SNPs distinguishing isolates from the same host is unlikely to have arisen during infection, as supported by our simulation models. This points to an unexpectedly wide transmission bottleneck for B. anthracis, with an inoculum comprising multiple variants being the norm. Our work highlights that inferring transmission patterns of B. anthracis from genomic data will require analytical approaches that account for extended and variable environmental persistence, as well as co-infection.


Assuntos
Antraz , Bacillus anthracis , Animais , Antraz/epidemiologia , Antraz/microbiologia , Antraz/veterinária , Bacillus anthracis/genética , Genômica , Metagenômica , Filogeografia
7.
Front Chem ; 9: 722087, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34490209

RESUMO

The majority of studies focusing on microbial functioning in various environments are based on DNA or RNA sequencing techniques that have inherent limitations and usually provide a distorted picture about the functional status of the studied system. Untargeted proteomics is better suited for that purpose, but it suffers from low efficiency when applied in complex consortia. In practice, the scanning capabilities of the currently employed LC-MS/MS systems provide limited coverage of key-acting proteins, hardly allowing a semiquantitative assessment of the most abundant ones from most prevalent species. When particular biological processes of high importance are under investigation, the analysis of specific proteins using targeted proteomics is a more appropriate strategy as it offers superior sensitivity and comes with the added benefits of increased throughput, dynamic range and selectivity. However, the development of targeted assays requires a priori knowledge regarding the optimal peptides to be screened for each protein of interest. In complex, multi-species systems, a specific biochemical process may be driven by a large number of homologous proteins having considerable differences in their amino acid sequence, complicating LC-MS/MS detection. To overcome the complexity of such systems, we have developed an automated pipeline that interrogates UniProt database or user-created protein datasets (e.g. from metagenomic studies) to gather homolog proteins with a defined functional role and extract respective peptide sequences, while it computes several protein/peptide properties and relevant statistics to deduce a small list of the most representative, process-specific and LC-MS/MS-amenable peptides for the microbial enzymatic activity of interest.

8.
J Med Microbiol ; 70(4)2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33909551

RESUMO

Candida albicans is an opportunistic pathogen accounting for the majority of cases of Candida infections. Currently, C. albicans are developing resistance towards different classes of antifungal drugs and this has become a global health burden that does not spare Lebanon. This study aims at determining point mutations in genes known to be involved in resistance acquisition and correlating resistance to virulence and ergosterol content in the azole resistant C. albicans isolate CA77 from Lebanon. This pilot study is the first of its kind to be implemented in Lebanon. We carried out whole genome sequencing of the azole resistant C. albicans isolate CA77 and examined 18 genes involved in antifungal resistance. To correlate genotype to phenotype, we evaluated the virulence potential of this isolate by injecting it into BALB/c mice and we quantified membrane ergosterol. Whole genome sequencing revealed that eight out of 18 genes involved in antifungal resistance were mutated in previously reported and novel residues. These genotypic changes were associated with an increase in ergosterol content but no discrepancy in virulence potential was observed between our isolate and the susceptible C. albicans control strain SC5314. This suggests that antifungal resistance and virulence potential in this antifungal resistant isolate are not correlated and that resistance is a result of an increase in membrane ergosterol content and the occurrence of point mutations in genes involved in the ergosterol biosynthesis pathway.


Assuntos
Candida albicans/efeitos dos fármacos , Candida albicans/genética , Farmacorresistência Fúngica/genética , Sequenciamento Completo do Genoma , Animais , Azóis/farmacologia , Candida albicans/química , Candida albicans/patogenicidade , Ergosterol/análise , Genótipo , Humanos , Líbano , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Projetos Piloto , Mutação Puntual , Virulência
9.
Environ Res ; 193: 110487, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33232750

RESUMO

Wastewaters serve as important hot spots for antimicrobial resistance and monitoring can be used to analyse the abundance and diversity of antimicrobial resistance genes at the level of large bacterial and human populations. In this study, whole genome sequencing of beta-lactamase-producing Escherichia coli and metagenomic analysis of whole-community DNA were used to characterize the occurrence of antimicrobial resistance in hospital, municipal and river waters in the city of Brno (Czech Republic). Cefotaxime-resistant E. coli were mainly extended-spectrum beta-lactamase (ESBL) producers (95.6%, n = 158), of which the majority carried blaCTX-M (98.7%; n = 151) and were detected in all water samples except the outflow from hospital wastewater treatment plant. A wide phylogenetic diversity was observed among the sequenced E. coli (n = 78) based on the detection of 40 sequence types and single nucleotide polymorphisms (average number 34,666 ± 15,710) between strains. The metagenomic analysis revealed a high occurrence of bacterial genera with potentially pathogenic members, including Pseudomonas, Escherichia, Klebsiella, Aeromonas, Enterobacter and Arcobacter (relative abundance >50%) in untreated hospital and municipal wastewaters and predominance of environmental bacteria in treated and river waters. Genes encoding resistance to aminoglycosides, beta-lactams, quinolones and macrolides were frequently detected, however blaCTX-M was not found in this dataset which may be affected by insufficient sequencing depth of the samples. The study pointed out municipal treated wastewater as a possible source of multi-drug resistant E. coli and antimicrobial resistance genes for surface waters. Moreover, the combination of two different approaches provided a more holistic view on antimicrobial resistance in water environments. The culture-based approach facilitated insight into the dynamics of ESBL-producing E. coli and the metagenomics shows abundance and diversity of bacteria and antimicrobial resistance genes vary across water sites.


Assuntos
Escherichia coli , Águas Residuárias , Antibacterianos/farmacologia , República Tcheca , Farmacorresistência Bacteriana/genética , Escherichia coli/genética , Hospitais , Humanos , Metagenômica , Filogenia , beta-Lactamases/genética
10.
J Glob Antimicrob Resist ; 22: 275-282, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32247078

RESUMO

INTRODUCTION: Tuberculosis is considered one of the most fatal diseases worldwide, with an estimation of 10.1 million cases. In this study, whole-genome sequencing was used to determine the genomic characterisation of 40 Mycobacterium tuberculosis isolates from patients with different nationalities hospitalised in the Czech Republic. MATERIALS AND METHODS: Susceptibility testing for first-line drugs was performed. DNA was sequenced using the Illumina MiSeq platform. Spoligotype single-nucleotide polymorphisms and mutations in antibiotic-resistant genes were detected, and phylogenetic analysis was performed. RESULTS: Samples showing phenotypic resistance to at least one drug were 12 to streptomycin, 11 to isoniazid, 7 to rifampicin, 6 to ethambutol and 5 to pyrazinamide. Phenotypic and genotypic profiles did not match in all cases, suggesting the presence of a novel mutation in some cases and a low expression of resistant genes in others. The presented phylogeny enables the correct assignation of M. tuberculosis lineages and sublineages. Our results suggest that the most dominant lineage in our samples was lineage 4 (33/40). CONCLUSION: To our knowledge, this is the first study using this approach to be done in the Czech Republic. Lineage 4 was the predominant lineage identified among our samples. Nevertheless, the dominance of Lineage 4 along with other lineages suggests that infections can originate from different sources.


Assuntos
Antituberculosos , Farmacorresistência Bacteriana Múltipla , Mycobacterium tuberculosis , Tuberculose Resistente a Múltiplos Medicamentos , Antituberculosos/farmacologia , República Tcheca , Farmacorresistência Bacteriana Múltipla/genética , Humanos , Mutação , Mycobacterium tuberculosis/genética , Filogenia
11.
mSphere ; 5(1)2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941816

RESUMO

Carbapenem-resistant Acinetobacter baumannii (CRAB) is an important opportunistic pathogen linked to a variety of nosocomial infections and hospital outbreaks worldwide. This study aimed at investigating and characterizing a CRAB outbreak at a large tertiary hospital in Lebanon. A total of 41 isolates were collected and analyzed using pulsed-field gel electrophoresis (PFGE). Whole-genome sequencing (WGS) was performed on all the isolates, and long-read PacBio sequencing was used to generate reference genomes. The multilocus sequence types (MLST), repertoire of resistance genes, and virulence factors were determined from the sequencing data. The plasmid content was analyzed both in silico and using the A. baumannii PCR-based replicon typing (AB-PBRT) method. Genome analysis initially revealed two clones, one carrying blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218) and another carrying blaOXA-72 on pMAL-1 (ST-502 and ST-2059, a new ST), with the latter having two subclones, as revealed using the Bayesian transmission network. All isolates were extensively drug resistant (XDR). WGS analysis revealed the transmission pathways and demonstrated the diversity of CRAB isolates and mobile genetic elements in this health care setting. Outbreak detection using WGS and immediate implementation of infection control measures contribute to restraining the spread and decreasing mortality.IMPORTANCE Carbapenem-resistant Acinetobacter baumannii (CRAB) has been implicated in hospital outbreaks worldwide. Here, we present a whole-genome-based investigation of an extensively drug-resistant CRAB outbreak rapidly spreading and causing high incidences of mortality at numerous wards of a large tertiary hospital in Lebanon. This is the first study of its kind in the region. Two circulating clones were identified using a combination of molecular typing approaches, short- and long-read sequencing and Bayesian transmission network analysis. One clone carried blaOXA-23 on Tn2006 (ST-1305, ST-195, and ST-218), and another carried blaOXA-72 on a pMAL-1 plasmid (ST-502 and ST-2059, a new ST). A pMAL-2 plasmid was circulating between the two clones. The approaches implemented in this study and the obtained findings facilitate the tracking of outbreak scenarios in Lebanon and the region at large.


Assuntos
Acinetobacter baumannii/classificação , Antibacterianos/farmacologia , Surtos de Doenças , Farmacorresistência Bacteriana Múltipla/genética , Genoma Bacteriano , Infecções por Acinetobacter/microbiologia , Acinetobacter baumannii/efeitos dos fármacos , Adulto , Idoso , Idoso de 80 Anos ou mais , Técnicas de Tipagem Bacteriana , Teorema de Bayes , Eletroforese em Gel de Campo Pulsado , Feminino , Humanos , Sequências Repetitivas Dispersas , Líbano , Masculino , Testes de Sensibilidade Microbiana , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Centros de Atenção Terciária , Sequenciamento Completo do Genoma
12.
Front Microbiol ; 11: 604067, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33519748

RESUMO

The aim of our study was to determine complete nucleotide sequence of mcr-1-carrying plasmids from Enterobacterales isolates recovered from domestic and imported raw retailed meat and compare them with plasmids available at the GenBank sequence database. A set of 16 plasmids originating from Escherichia coli (n = 13), Klebsiella pneumoniae (n = 2), and Citrobacter braakii (n = 1) were analyzed. In our previous study, data from whole genome sequencing showed that mcr-1 gene was located on plasmids of different incompatibility groups (IncHI2, IncI2, and IncX4). The IncI2 (n = 3) and IncX4 (n = 8) plasmids harbored mcr-1.1 gene only, whereas IncHI2 sequence type 4 plasmids (n = 5) carried large multidrug resistance (MDR) regions. MDR regions of IncHI2 plasmids included additional antimicrobial resistance genes conferring resistance to ß-lactams (bla TEM-1), aminoglycosides [aadA1, aadA2, and aph(6)-Id], macrolides [mef (B)], tetracycline (tetA, tetR), and sulphonamides (sul1, sul2, and sul3). Likewise, IncHI2 plasmids carried several insertion sequences including IS1, IS3, IS26, IS1326, and ISApl1. In conclusion, our findings confirmed the involvement of IncX4, IncI2, and IncHI2 plasmids in the dissemination of mcr-1.1 gene in several environmental niches, as in samples of retail meat originating from different geographical regions. In contrast to IncX4 and IncI2, IncHI2 plasmids were more diverse and carried additional genes for resistance to heavy metals and multiple antimicrobials.

14.
Artigo em Inglês | MEDLINE | ID: mdl-31332072

RESUMO

Here, we describe two plasmids carrying mcr-4.3 in two Acinetobacter baumannii strains isolated from imported food and a clinical sample. The comparative analysis of these plasmids, with two other plasmids reported in the NCBI database, highlighted the common origin of the plasmidic structure carrying mcr-4.3 This is the first case of the mcr-4.3 gene in a A. baumannii strain isolated from a clinical case in Europe. We hypothesize that food import is initiating the spread in Czech Republic.


Assuntos
Acinetobacter baumannii/genética , Plasmídeos/genética , Idoso de 80 Anos ou mais , República Tcheca , Farmacorresistência Bacteriana/genética , Europa (Continente) , Feminino , Humanos , Testes de Sensibilidade Microbiana , Peptídeos/genética
15.
Mar Environ Res ; 144: 102-110, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30654982

RESUMO

As ocean acidification intensifies, there is growing global concern about the impacts that future pH levels are likely to have on marine life and ecosystems. By analogy, a steep decrease of seawater pH with depth is encountered inside the Kolumbo submarine volcano (northeast Santorini) as a result of natural CO2 venting, making this system ideal for ocean acidification research. Here, we investigated whether the increase of acidity towards deeper layers of Kolumbo crater had any effect on relevant phenotypic traits of bacterial isolates. A total of 31 Pseudomonas strains were isolated from both surface- (SSL) and deep-seawater layers (DSL), with the latter presenting a significantly higher acid tolerance. In particular, the DSL strains were able to cope with H+ levels that were 18 times higher. Similarly, the DSL isolates exhibited a significantly higher tolerance than SSL strains against six commonly used antibiotics and As(III). More importantly, a significant positive correlation was revealed between antibiotics and acid tolerance across the entire set of SSL and DSL isolates. Our findings imply that Pseudomonas species with higher resilience to antibiotics could be favored by the prospect of acidifying oceans. Further studies are required to determine if this feature is universal across marine bacteria and to assess potential ecological impacts.


Assuntos
Ácidos/farmacologia , Antibacterianos/farmacologia , Ecossistema , Fontes Hidrotermais/microbiologia , Pseudomonas/efeitos dos fármacos , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Oceanos e Mares , Pseudomonas/classificação , Pseudomonas/isolamento & purificação , Água do Mar/microbiologia
16.
Foodborne Pathog Dis ; 16(1): 42-53, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30673354

RESUMO

The study aimed to monitor the fecal shedding of cefotaxime-resistant Escherichia coli (CREC) in a cohort of healthy calves on a dairy farm with documented antimicrobial usage and to characterize selected AmpC beta-lactamase-producing E. coli isolates. Fecal samples from 13 suckling calves (1-63 d of age; 113 samples in total) were repeatedly collected and cultivated on MacConkey agar with cefotaxime (2 mg/L). Resistant colonies were counted, and one colony obtained from the highest dilution of each fecal sample was identified by matrix-assisted laser desorption-ionization time-of-flight mass spectrometry. Susceptibility to antimicrobials and production of AmpC and extended-spectrum beta-lactamase (ESBL) were tested. No ESBL-producing E. coli was found, but representative AmpC-positive E. coli isolates were subjected to further typing and whole-genome sequencing (WGS) for the analysis of clonal relationships, resistance genes, virulence factors, and plasmid replicons. High amounts of CREC were detected in the feces of all 13 calves during the study. The number of CREC colonies varied from 1.0 log10 to 8.0 log10 colony-forming unit per gram. Drops in CREC density or its discontinued shedding were recorded at the end of the study period. A total of 82 (94%, n = 87) CREC isolates were confirmed as AmpC producers and all but one showed resistance to multiple antimicrobials. Twenty-nine selected AmpC-positive E. coli isolates belonged to 12 and 13 unique rep-PCR fingerprints and pulsed-field gel electrophoresis types, respectively, highlighting the variation in E. coli genotypes in individual calves. WGS of 10 selected isolates showed diverse antimicrobial resistance and virulence gene content and the presence of a blaCMY-2 gene carried by an IncK2 plasmid. Clinically important multiresistant E. coli isolates belonging to emerging extraintestinal pathogenic E. coli ST69 and ST648 lineages were found. Our findings reinforce the urgency of efforts to prevent the spread of ESBL-/AmpC-producing bacteria in dairy cow farms.


Assuntos
Anti-Infecciosos/farmacologia , Cefotaxima/farmacologia , Infecções por Escherichia coli/veterinária , Escherichia coli/genética , Mastite Bovina/microbiologia , beta-Lactamases/genética , Animais , Animais Lactentes , Derrame de Bactérias , Bovinos , República Tcheca/epidemiologia , Escherichia coli/enzimologia , Escherichia coli/isolamento & purificação , Escherichia coli/patogenicidade , Infecções por Escherichia coli/epidemiologia , Infecções por Escherichia coli/microbiologia , Fazendas , Fezes/microbiologia , Feminino , Mastite Bovina/epidemiologia , Plasmídeos/genética , Fatores de Virulência/genética , Sequenciamento Completo do Genoma/veterinária
17.
Microb Drug Resist ; 25(4): 543-550, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30403546

RESUMO

The aim of the present study was to determine the rate and mechanisms of resistance to macrolides, lincosamides, and streptogramin B (MLSB) antibiotics of Staphylococcus aureus collected in Central Greece. Of the 2,893 S. aureus collected during 2012-2017, 1,161 isolates (40.2%) exhibited resistance to at least one of the MLSB agents. The rate of erythromycin resistance was statistically significantly higher in methicillin-resistant S. aureus (MRSA) (58.6%) than in methicillin-sensitive S. aureus (MSSA) isolates (20.7%) (p = 0.002). Two hundred seventy-five representative MLSB-resistant S. aureus, including 81 MSSA and 194 MRSA isolates, were further studied. Thirty-eight MSSA isolates carried ermC, 26 MSSA were positive for ermA, whereas 17 isolates carried msrA gene. Among MRSA, the ermA gene was identified in the majority of the isolates (n = 153). Thirty-seven MRSA isolates carried ermC; three isolates carried msrA, whereas the remaining MRSA was positive for two genes (ermA and ermC). Phylogenetic analysis showed that ST225, which belongs to CC5, was the most prevalent, accounting for 137 MRSA isolates. Higher genetic diversity was found in the group of MSSA isolates, which comprised of 13 sequence types. Whole-genome sequencing data showed that all ermA-positive S. aureus, with the exception of one ST398 isolate, harbored the ermA-carrying Tn554 transposon integrated into their chromosomes. Furthermore, Illumina sequencing followed by polymerase chain reaction screening identified that ermC, which was identified in a polyclonal population of MSSA and MRSA isolates, was carried by small plasmids, like pNE131. These findings highlighted the important role of high-risk clones and of mobile elements carrying resistance genes in the successful dissemination of MLSB-resistant staphylococci.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Lincosamidas/farmacologia , Macrolídeos/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/genética , Estreptogramina B/farmacologia , Proteínas de Bactérias/genética , Genótipo , Grécia , Humanos , Testes de Sensibilidade Microbiana/métodos , Filogenia , Infecções Estafilocócicas/tratamento farmacológico , Infecções Estafilocócicas/microbiologia
18.
BMC Genomics ; 19(1): 561, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30064352

RESUMO

BACKGROUND: In order to start to understand the function of individual members of gut microbiota, we cultured, sequenced and analysed bacterial anaerobes from chicken caecum. RESULTS: Altogether 204 isolates from chicken caecum were obtained in pure cultures using Wilkins-Chalgren anaerobe agar and anaerobic growth conditions. Genomes of all the isolates were determined using the NextSeq platform and subjected to bioinformatic analysis. Among 204 sequenced isolates we identified 133 different strains belonging to seven different phyla - Firmicutes, Bacteroidetes, Actinobacteria, Proteobacteria, Verrucomicrobia, Elusimicrobia and Synergistetes. Genome sizes ranged from 1.51 Mb in Elusimicrobium minutum to 6.70 Mb in Bacteroides ovatus. Clustering based on the presence of protein coding genes showed that isolates from phyla Proteobacteria, Verrucomicrobia, Elusimicrobia and Synergistetes did not cluster with the remaining isolates. Firmicutes split into families Lactobacillaceae, Enterococcaceae, Veillonellaceae and order Clostridiales from which the Clostridium perfringens isolates formed a distinct sub-cluster. All Bacteroidetes isolates formed a separate cluster showing similar genetic composition in all isolates but distinct from the rest of the gut anaerobes. The majority of Actinobacteria clustered closely together except for the representatives of genus Gordonibacter showing that the genome of this genus differs from the rest of Actinobacteria sequenced in this study. Representatives of Bacteroidetes commonly encoded proteins (collagenase, hemagglutinin, hemolysin, hyaluronidase, heparinases, chondroitinase, mucin-desulfating sulfatase or glutamate decarboxylase) that may enable them to interact with their host. Aerotolerance was recorded in Akkermansia and Cloacibacillus and was also common among representatives of Bacteroidetes. On the other hand, Elusimicrobium and the majority of Clostridiales were highly sensitive to air exposure despite their potential for spore formation. CONCLUSIONS: Major gut microbiota members utilise different strategies for gut colonisation. High oxygen sensitivity of Firmicutes may explain their commonly reported decrease after oxidative burst during gut inflammation.


Assuntos
Bactérias Anaeróbias/isolamento & purificação , Ceco/microbiologia , Galinhas , DNA Bacteriano/genética , Sequenciamento Completo do Genoma/métodos , Animais , Bactérias Anaeróbias/genética , Microbioma Gastrointestinal , Tamanho do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia
19.
Front Microbiol ; 9: 1549, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30042758

RESUMO

The aim of the present study was to characterize sporadic cases and an outbreak of NDM-like-producing Enterobacteriaceae recovered from hospital settings, in Czechia. During 2016, 18 Entrobacteriaceae isolates including 10 Enterobacter cloacae complex (9 E. xiangfangensis and 1 E. asburiae), 4 Escherichia coli, 1 Kluyvera intermedia, 1 Klebsiella pneumoniae, 1 Klebsiella oxytoca, and 1 Raoultella ornithinolytica that produced NDM-like carbapenemases were isolated from 15 patients. Three of the patients were colonized or infected by two different NDM-like producers. Moreover, an NDM-4-producing isolate of E. cloacae complex, isolated in 2012, was studied for comparative purposes. All isolates of E. cloacae complex, except the E. asburiae, recovered from the same hospital, were assigned to ST182. Additionally, two E. coli belonged to ST167, while the remaining isolates were not clonally related. Thirteen isolates carried blaNDM-4, while six isolates carried blaNDM-1 (n = 3) or blaNDM-5 (n = 3). Almost all isolates carried blaNDM-like-carrying plasmids being positive for the IncX3 allele, except ST58 E. coli and ST14 K. pneumoniae isolates producing NDM-1. Analysis of plasmid sequences revealed that all IncX3 blaNDM-like-carrying plasmids exhibited a high similarity to each other and to previously described plasmids, like pNDM-QD28, reported from worldwide. However, NDM-4-encoding plasmids differed from other IncX3 plasmids by the insertion of a Tn3-like transposon. On the other hand, the ST58 E. coli and ST14 K. pneumoniae isolates carried two novel NDM-1-encoding plasmids, pKpn-35963cz, and pEsco-36073cz. Plasmid pKpn-35963cz that was an IncFIB(K) molecule contained an acquired sequence, encoding NDM-1 metallo-ß-lactamase (MßL), which exhibited high similarity to the mosaic region of pS-3002cz from an ST11 K. pneumoniae from Czechia. Finally, pEsco-36073cz was a multireplicon A/C2+R NDM-1-encoding plasmid. Similar to other type 1 A/C2 plasmids, the blaNDM-1 gene was located within the ARI-A resistance island. These findings underlined that IncX3 plasmids have played a major role in the dissemination of blaNDM-like genes in Czech hospitals. In combination with further evolvement of NDM-like-encoding MDR plasmids through reshuffling, NDM-like producers pose an important public threat.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...