Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 8463, 2022 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-35589786

RESUMO

Typhoon Maysak (Julian in the Philippines) was a powerful tropical cyclone that strongly impacted coastal regions of the Sea of Japan on 2-4 September 2020. Destructive winds, violent storm waves, and intense rainfall occurred in Japan, on the Korean Peninsula, and in Far-Eastern Russia. Devastating coastal floods caused severe damage to coastal infrastructure and to ships and boats anchored in harbours and were responsible for numerous deaths. Our study indicates that the main reason for the destructive floods was the superposition of storm surge, extreme seiches (meteorological tsunamis), and surf beats. At various sites, different types of sea level oscillations prevailed depending on the atmospheric forcing, local topographic properties, and resonant shelf/coastal zone features. The principal forcing factors of these oscillations were atmospheric pressure and wind stress, but the exact generation mechanism of each specific type of oscillation was strongly site dependent. The uniqueness of the sea level response at each site is the main challenge in our understanding of the generation process and to the mitigation of the hazardous consequences of possible future events.


Assuntos
Tempestades Ciclônicas , Inundações , Japão , Filipinas , Vento
2.
Sensors (Basel) ; 21(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207695

RESUMO

The Arctic seas are now of particular interest due to their prospects in terms of hydrocarbon extraction, development of marine transport routes, etc. Thus, various geohazards, including those related to seismicity, require detailed studies, especially by instrumental methods. This paper is devoted to the ocean-bottom seismographs (OBS) based on broadband molecular-electronic transfer (MET) sensors and a deployment case study in the Laptev Sea. The purpose of the study is to introduce the architecture of several modifications of OBS and to demonstrate their applicability in solving different tasks in the framework of seismic hazard assessment for the Arctic seas. To do this, we used the first results of several pilot deployments of the OBS developed by Shirshov Institute of Oceanology of the Russian Academy of Sciences (IO RAS) and IP Ilyinskiy A.D. in the Laptev Sea that took place in 2018-2020. We highlighted various seismological applications of OBS based on broadband MET sensors CME-4311 (60 s) and CME-4111 (120 s), including the analysis of ambient seismic noise, registering the signals of large remote earthquakes and weak local microearthquakes, and the instrumental approach of the site response assessment. The main characteristics of the broadband MET sensors and OBS architectures turned out to be suitable for obtaining high-quality OBS records under the Arctic conditions to solve seismological problems. In addition, the obtained case study results showed the prospects in a broader context, such as the possible influence of the seismotectonic factor on the bottom-up thawing of subsea permafrost and massive methane release, probably from decaying hydrates and deep geological sources. The described OBS will be actively used in further Arctic expeditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...