Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Comput Graph Stat ; 29(3): 668-674, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33716477

RESUMO

Matrix-variate distributions can intuitively model the dependence structure of matrix-valued observations that arise in applications with multivariate time series, spatio-temporal or repeated measures. This paper develops an Expectation-Maximization algorithm for discriminant analysis and classification with matrix-variate t-distributions. The methodology shows promise on simulated datasets or when applied to the forensic matching of fractured surfaces or the classification of functional Magnetic Resonance, satellite or hand gestures images.

2.
Lifetime Data Anal ; 20(2): 161-84, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23381812

RESUMO

System reliability depends on the reliability of the system's components and the structure of the system. For example, in a competing risks model, the system fails when the weakest component fails. The reliability function and the quantile function of a complicated system are two important metrics for characterizing the system's reliability. When there are data available at the component level, the system reliability can be estimated by using the component level information. Confidence intervals (CIs) are needed to quantify the statistical uncertainty in the estimation. Obtaining system reliability CI procedures with good properties is not straightforward, especially when the system structure is complicated. In this paper, we develop a general procedure for constructing a CI for the system failure-time quantile function by using the implicit delta method. We also develop general procedures for constructing a CI for the cumulative distribution function (cdf) of the system. We show that the recommended procedures are asymptotically valid and have good statistical properties. We conduct simulations to study the finite-sample coverage properties of the proposed procedures and compare them with existing procedures. We apply the proposed procedures to three applications; two applications in competing risks models and an application with a k-out-of-s system. The paper concludes with some discussion and an outline of areas for future research.


Assuntos
Modelos Estatísticos , Risco , Intervalos de Confiança , Funções Verossimilhança , Reprodutibilidade dos Testes , Teoria de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...