Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Opt Soc Am A Opt Image Sci Vis ; 41(3): A25-A31, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38437420

RESUMO

We present an experimental approach for generating perturbed high-order Ince-Gaussian laser modes by transforming the low and moderate-intensity lobes of high-order Ince-Gaussian (IG) modes into high-intensity lobes and vice versa. This perturbation reshuffles optical energy among the different lobes and generates new, to the best of our knowledge, modulated Ince-Gaussian (MIG) modes. Computer-generated holograms displayed over spatial light modulators were used to modulate the IGMs. Compared to IG modes, MIG modes are generated precisely in a sense that enhances the IG modes and provides a maximum number of highly intense lobes in a particular mode. That enables the newly generated MIG modes to be utilized more efficiently than IG modes in applications such as particle manipulation and optical trapping of microparticles, which exploit highly intense lobes.

2.
Appl Opt ; 62(36): 9599-9604, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-38108786

RESUMO

We present the formation of super-oscillatory (SO) spots by tightly focusing the inhomogeneous linear polarized beam of different polarization states. At the entrance pupil of the focusing lens, a suitable phase manipulation in the incident beam results in a small super-oscillatory spot. Our numerical study based on the vectorial diffraction theory shows that SO spots of controllable size and various polarization combinations are possible. We also discuss the effect of the different polarization patterns of the incident beam on the size and energy distribution of the generated SO spots, which are potentially valuable for the orientation determination of single molecules and polarization-resolved imaging. This study reveals more influence of polarization states on the different components of the focused beam under the utilization of the proposed method rather than the usual tight focusing conditions.

3.
J Opt Soc Am A Opt Image Sci Vis ; 40(9): 1770-1778, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37707014

RESUMO

High-order helical and sinusoidal Laguerre-Gaussian (LG) laser modes have uneven energy distribution among their multiple concentric vortex core rings and lobes, respectively. Here, we explore an experimental method to reshuffle the optical energy among their multiple concentric vortex core rings and lobes of high-order LG modes in a controllable manner. We numerically designed a diffractive optical element displayed over a spatial light modulator to rearrange optical energy among multiple concentric vortex core rings. This changes outer low-intensity concentric vortex core rings into high-intensity vortex core rings of high-order helical LG modes at the Fourier plane. The precise generation of a high-order modulated helical LG laser mode has a maximum number of highly intense concentric vortex core rings compared to known standard helical LG modes. Further, this method is extended to high-order sinusoidal LG modes consisting of both low- and high-intensity lobes to realize modulated sinusoidal LG modes with a maximum number of highly intense lobes in a controllable manner. We envisage that the modulated helical and sinusoidal high-order LG modes may surpass standard LG modes in many applications where highly intense rings and lobes are crucial, as in particle manipulation of micro- and nanoparticles, and optical lithography.

4.
Opt Lett ; 48(5): 1240-1243, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857257

RESUMO

We present a method that creates a super-oscillatory focal spot of a tightly focused radially polarized beam using the concept of a phase mask. Using vector diffraction theory, we report a super-oscillatory focal spot that is much smaller than the diffraction limit and the super-oscillation criterion. The proposed mask works as a special polarization filter that enhances the longitudinal component and filters out the transverse component of radial polarization at focus, permitting the creation of a pure longitudinal super-oscillatory focal spot.

5.
J Opt Soc Am A Opt Image Sci Vis ; 39(11): 2104-2109, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36520707

RESUMO

Here, we present an experimental method that redistributes the optical energy among the lobes of high-order standard Hermite-Gaussian (SHG) laser modes in a controlled manner. We numerically designed diffractive optical elements, displayed over a spatial light modulator for redistribution of optical energy that converts low and moderate intense lobes into all highly intense lobes and vice versa at the Fourier plane. Such precise generation of modulated HG (MHG) laser modes offers a maximum number of highly intense lobes compared to SHG modes. Hence, we envisage that MHG beams may surpass SHG beams in many applications, such as particle manipulation and optical lithography, where highly intense lobes play a significant role.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...