Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomolecules ; 14(5)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38785980

RESUMO

Autophagy is an evolutionarily conserved lysosome-dependent degradation of cytoplasmic constituents. The system operates as a critical cellular pro-survival mechanism in response to nutrient deprivation and a variety of stress conditions. On top of that, autophagy is involved in maintaining cellular homeostasis through selective elimination of worn-out or damaged proteins and organelles. The autophagic pathway is largely responsible for the delivery of cytosolic glycogen to the lysosome where it is degraded to glucose via acid α-glucosidase. Although the physiological role of lysosomal glycogenolysis is not fully understood, its significance is highlighted by the manifestations of Pompe disease, which is caused by a deficiency of this lysosomal enzyme. Pompe disease is a severe lysosomal glycogen storage disorder that affects skeletal and cardiac muscles most. In this review, we discuss the basics of autophagy and describe its involvement in the pathogenesis of muscle damage in Pompe disease. Finally, we outline how autophagic pathology in the diseased muscles can be used as a tool to fast track the efficacy of therapeutic interventions.


Assuntos
Autofagia , Doença de Depósito de Glicogênio Tipo II , Doença de Depósito de Glicogênio Tipo II/patologia , Doença de Depósito de Glicogênio Tipo II/metabolismo , Humanos , Animais , Glicogênio/metabolismo , Lisossomos/metabolismo , alfa-Glucosidases/metabolismo , Músculo Esquelético/patologia , Músculo Esquelético/metabolismo
3.
JCI Insight ; 8(16)2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37463048

RESUMO

Gene therapy is under advanced clinical development for several lysosomal storage disorders. Pompe disease, a debilitating neuromuscular illness affecting infants, children, and adults with different severity, is caused by a deficiency of lysosomal glycogen-degrading enzyme acid α-glucosidase (GAA). Here, we demonstrated that adeno-associated virus-mediated (AAV-mediated) systemic gene transfer reversed glycogen storage in all key therapeutic targets - skeletal and cardiac muscles, the diaphragm, and the central nervous system - in both young and severely affected old Gaa-knockout mice. Furthermore, the therapy reversed secondary cellular abnormalities in skeletal muscle, such as those in autophagy and mTORC1/AMPK signaling. We used an AAV9 vector encoding a chimeric human GAA protein with enhanced uptake and secretion to facilitate efficient spread of the expressed protein among multiple target tissues. These results lay the groundwork for a future clinical development strategy in Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , alfa-Glucosidases , Criança , Camundongos , Humanos , Animais , alfa-Glucosidases/genética , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/terapia , Doença de Depósito de Glicogênio Tipo II/patologia , Dependovirus/genética , Dependovirus/metabolismo , Vetores Genéticos/genética , Camundongos Knockout , Glicogênio/metabolismo
4.
Mol Genet Metab ; 137(1-2): 228-240, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35718712

RESUMO

Alglucosidase alpha is an orphan drug approved for enzyme replacement therapy (ERT) in Pompe disease (PD); however, its efficacy is limited in skeletal muscle because of a partial blockage of autophagic flux that hinders intracellular trafficking and enzyme delivery. Adjunctive therapies that enhance autophagic flux and protect mitochondrial integrity may alleviate autophagic blockage and oxidative stress and thereby improve ERT efficacy in PD. In this study, we compared the benefits of ERT combined with a ketogenic diet (ERT-KETO), daily administration of an oral ketone precursor (1,3-butanediol; ERT-BD), a multi-ingredient antioxidant diet (ERT-MITO; CoQ10, α-lipoic acid, vitamin E, beetroot extract, HMB, creatine, and citrulline), or co-therapy with the ketone precursor and multi-ingredient antioxidants (ERT-BD-MITO) on skeletal muscle pathology in GAA-KO mice. We found that two months of 1,3-BD administration raised circulatory ketone levels to ≥1.2 mM, attenuated autophagic buildup in type 2 muscle fibers, and preserved muscle strength and function in ERT-treated GAA-KO mice. Collectively, ERT-BD was more effective vs. standard ERT and ERT-KETO in terms of autophagic clearance, dampening of oxidative stress, and muscle maintenance. However, the addition of multi-ingredient antioxidants (ERT-BD-MITO) provided the most consistent benefits across all outcome measures and normalized mitochondrial protein expression in GAA-KO mice. We therefore conclude that nutritional co-therapy with 1,3-butanediol and multi-ingredient antioxidants may provide an alternative to ketogenic diets for inducing ketosis and enhancing autophagic flux in PD patients.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Ácido Tióctico , Camundongos , Animais , Doença de Depósito de Glicogênio Tipo II/patologia , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Creatina/metabolismo , Citrulina , alfa-Glucosidases/genética , alfa-Glucosidases/uso terapêutico , alfa-Glucosidases/metabolismo , Terapia de Reposição de Enzimas , Músculo Esquelético/metabolismo , Proteínas Mitocondriais/metabolismo , Vitamina E/farmacologia , Cetonas/metabolismo , Cetonas/farmacologia , Cetonas/uso terapêutico
5.
Chem Sci ; 12(37): 12451-12462, 2021 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-34603676

RESUMO

Functionalization of therapeutic lysosomal enzymes with mannose-6-phosphate (M6P) glycan ligands represents a major strategy for enhancing the cation-independent M6P receptor (CI-MPR)-mediated cellular uptake, thus improving the overall therapeutic efficacy of the enzymes. However, the minimal high-affinity M6P-containing N-glycan ligands remain to be identified and their efficient and site-selective conjugation to therapeutic lysosomal enzymes is a challenging task. We report here the chemical synthesis of truncated M6P-glycan oxazolines and their use for enzymatic glycan remodeling of recombinant human acid α-glucosidase (rhGAA), an enzyme used for treatment of Pompe disease which is a disorder caused by a deficiency of the glycogen-degrading lysosomal enzyme. Structure-activity relationship studies identified M6P tetrasaccharide oxazoline as the minimal substrate for enzymatic transglycosylation yielding high-affinity M6P glycan ligands for the CI-MPR. Taking advantage of the substrate specificity of endoglycosidases Endo-A and Endo-F3, we found that Endo-A and Endo-F3 could efficiently deglycosylate the respective high-mannose and complex type N-glycans in rhGAA and site-selectively transfer the synthetic M6P N-glycan to the deglycosylated rhGAA without product hydrolysis. This discovery enabled a highly efficient one-pot deglycosylation/transglycosylation strategy for site-selective M6P-glycan remodeling of rhGAA to obtain a more homogeneous product. The Endo-A and Endo-F3 remodeled rhGAAs maintained full enzyme activity and demonstrated 6- and 20-fold enhanced binding affinities for CI-MPR receptor, respectively. Using an in vitro cell model system for Pompe disease, we demonstrated that the M6P-glycan remodeled rhGAA greatly outperformed the commercial rhGAA (Lumizyme) and resulted in the reversal of cellular pathology. This study provides a general and efficient method for site-selective M6P-glycan remodeling of recombinant lysosomal enzymes to achieve enhanced M6P receptor binding and cellular uptake, which could lead to improved overall therapeutic efficacy of enzyme replacement therapy.

6.
Biomolecules ; 10(9)2020 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-32962155

RESUMO

Pompe disease, also known as glycogen storage disease type II, is caused by the lack or deficiency of a single enzyme, lysosomal acid alpha-glucosidase, leading to severe cardiac and skeletal muscle myopathy due to progressive accumulation of glycogen. The discovery that acid alpha-glucosidase resides in the lysosome gave rise to the concept of lysosomal storage diseases, and Pompe disease became the first among many monogenic diseases caused by loss of lysosomal enzyme activities. The only disease-specific treatment available for Pompe disease patients is enzyme replacement therapy (ERT) which aims to halt the natural course of the illness. Both the success and limitations of ERT provided novel insights in the pathophysiology of the disease and motivated the scientific community to develop the next generation of therapies that have already progressed to the clinic.


Assuntos
Terapia de Reposição de Enzimas/métodos , Terapia Genética/métodos , Doença de Depósito de Glicogênio Tipo II/terapia , Doenças por Armazenamento dos Lisossomos/terapia , alfa-Glucosidases/uso terapêutico , Autofagia/genética , Glicogênio/metabolismo , Doença de Depósito de Glicogênio Tipo II/enzimologia , Doença de Depósito de Glicogênio Tipo II/genética , Humanos , Doenças por Armazenamento dos Lisossomos/enzimologia , Doenças por Armazenamento dos Lisossomos/genética , Lisossomos/metabolismo , Músculo Esquelético/metabolismo , alfa-Glucosidases/deficiência , alfa-Glucosidases/genética
7.
Mol Ther Methods Clin Dev ; 18: 199-214, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32671132

RESUMO

Pompe disease, a deficiency of glycogen-degrading lysosomal acid alpha-glucosidase (GAA), is a disabling multisystemic illness that invariably affects skeletal muscle in all patients. The patients still carry a heavy burden of the disease, despite the currently available enzyme replacement therapy. We have previously shown that progressive entrapment of glycogen in the lysosome in muscle sets in motion a whole series of "extra-lysosomal" events including defective autophagy and disruption of a variety of signaling pathways. Here, we report that metabolic abnormalities and energy deficit also contribute to the complexity of the pathogenic cascade. A decrease in the metabolites of the glycolytic pathway and a shift to lipids as the energy source are observed in the diseased muscle. We now demonstrate in a pre-clinical study that a recently developed replacement enzyme (recombinant human GAA; AT-GAA; Amicus Therapeutics) with much improved lysosome-targeting properties reversed or significantly improved all aspects of the disease pathogenesis, an outcome not observed with the current standard of care. The therapy was initiated in GAA-deficient mice with fully developed muscle pathology but without obvious clinical symptoms; this point deserves consideration.

8.
Front Cell Dev Biol ; 8: 609683, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490073

RESUMO

Response and adaptation to stress are critical for the survival of all living organisms. The regulation of the transcriptional machinery is an important aspect of these complex processes. The members of the microphthalmia (MiT/TFE) family of transcription factors, apart from their involvement in melanocyte biology, are emerging as key players in a wide range of cellular functions in response to a plethora of internal and external stresses. The MiT/TFE proteins are structurally related and conserved through evolution. Their tissue expression and activities are highly regulated by alternative splicing, promoter usage, and posttranslational modifications. Here, we summarize the functions of MiT/TFE proteins as master transcriptional regulators across evolution and discuss the contribution of animal models to our understanding of the various roles of these transcription factors. We also highlight the importance of deciphering transcriptional regulatory mechanisms in the quest for potential therapeutic targets for human diseases, such as lysosomal storage disorders, neurodegeneration, and cancer.

9.
Ann Transl Med ; 7(13): 279, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31392191

RESUMO

Autophagy is a major intracellular self-digestion process that brings cytoplasmic materials to the lysosome for degradation. Defective autophagy has been linked to a broad range of human disorders, including cancer, diabetes, neurodegeneration, autoimmunity, cardiovascular diseases, and myopathies. In Pompe disease, a severe neuromuscular disorder, disturbances in autophagic process manifest themselves as progressive accumulation of undegraded cellular debris in the diseased muscle cells. A growing body of evidence has connected this defect to the decline in muscle function and muscle resistance to the currently available treatment-enzyme replacement therapy (ERT). Both induction and inhibition of autophagy have been tested in pre-clinical studies in a mouse model of the disease. Here, we discuss strengths and weaknesses of different approaches to address autophagic dysfunction in the context of Pompe disease.

10.
Immunology ; 155(4): 505-518, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30144045

RESUMO

Mammalian target of rapamycin complex 1 (mTORC1) is a key regulator of cell metabolism and lymphocyte proliferation. It is inhibited by the tuberous sclerosis complex (TSC), a heterodimer of TSC1 and TSC2. Deletion of either gene results in robust activation of mTORC1. Mature B cells reside in the spleen at two major anatomical locations, the marginal zone (MZ) and follicles. The MZ constitutes the first line of humoral response against blood-borne pathogens and undergoes atrophy in chronic inflammation. In previous work, we showed that mice deleted for TSC1 in their B cells (TSC1BKO ) have almost no MZ B cells, whereas follicular B cells are minimally affected. To explore potential underlying mechanisms for MZ B-cell loss, we have analysed the spleen MZ architecture of TSC1BKO mice and found it to be severely impaired. Examination of lymphotoxins (LTα and LTß) and lymphotoxin receptor (LTßR) expression indicated that LTßR levels in spleen stroma were reduced by TSC1 deletion in the B cells. Furthermore, LTα transcripts in B cells were reduced. Because LTßR is sensitive to proteolysis, we analysed cathepsin activity in TSC1BKO . A higher cathepsin activity, particularly of cathepsin B, was observed, which was reduced by mTORC1 inhibition with rapamycin in vivo. Remarkably, in vivo administration of a pan-cathepsin inhibitor restored LTßR expression, LTα mRNA levels and the MZ architecture. Our data identify a novel connection, although not elucidated at the molecular level, between mTORC1 and cathepsin activity in a manner relevant to MZ dynamics.


Assuntos
Linfócitos B/imunologia , Catepsinas/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Baço/imunologia , Animais , Células CHO , Catepsinas/antagonistas & inibidores , Linhagem Celular , Cricetulus , Receptor beta de Linfotoxina/biossíntese , Linfotoxina-alfa/biossíntese , Linfotoxina-beta/biossíntese , Camundongos , Camundongos Transgênicos , Sirolimo/farmacologia , Baço/citologia , Proteína 1 do Complexo Esclerose Tuberosa/genética , Proteína 2 do Complexo Esclerose Tuberosa/genética
11.
PLoS One ; 12(9): e0184701, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28880912

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0173447.].

12.
PLoS One ; 12(3): e0173447, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28301487

RESUMO

BACKGROUND AND AIM: MicroRNAs are small non-coding RNAs that play an important role in regulating the gene expression of their target genes. SNP miR-196a-2 rs11614913 and miR-499 rs3746444 are reported to have association with the risk and prognosis of multiple-types of inflammatory diseases including IBD. This study was conducted to show if any association of SNP miR-196a-2rs11614913 and miR-499 rs3746444 exists with ulcerative colitis (UC) patients of north Indian population and how these polymorphisms modulate the expression profile of the respective miRNAs. METHODS: A total of 638 participants including 197 UC patients and 441 controls were included in this study. Polymorphisms were genotyped by PCR-RFLP and the miRNA expression was measured using qRT-PCR. Genotypes and allele frequencies were calculated using SPSS 16 software. RESULTS: MiR-196a-2 rs11614913 (C>T) and miR-499 rs3746444 (T>C) were found to be associated with UC. TT genotype of miR-196a-2 rs11614913 (p = 0.03) was negatively associated with UC whereas the heterozygous TC genotype of miR-499 rs3746444 (p = 0.003) was showing positive association with UC. Patients having a combination of both SNPs, developed disease at older age and they suffered from severe disease extent. Genotype that showed association with the disease also showed correlation with the changes in miRNA expression. CONCLUSION: In this study we found miR-196a-2 rs11614913 and miR-499 rs3746444 were associated with UC in north Indian population. We found the genotype that showed association with UC also altered the expression of respective miRNA in the patient harboring the genotype. There was correlation between associated genotype and altered miRNA expression.


Assuntos
Colite Ulcerativa/genética , MicroRNAs/genética , Adolescente , Adulto , Estudos de Casos e Controles , Feminino , Genótipo , Humanos , Masculino , Fenótipo , Polimorfismo de Nucleotídeo Único , Reação em Cadeia da Polimerase em Tempo Real , Adulto Jovem
13.
PLoS One ; 10(3): e0120697, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25789623

RESUMO

BACKGROUND AND AIM: In health, TLR signaling protects the intestinal epithelial barrier and in disease, aberrant TLR signaling stimulates diverse inflammatory responses. Association of TLR polymorphisms is ethnicity dependent but how they impact the complex pathogenesis of IBD is not clearly defined. So we propose to study the status of polymorphisms in TLR family of genes and their effect on cytokines level in UC patients. METHODS: The genotypes of the six loci TLR1-R80T, TLR2-R753Q, TLR3-S258G, TLR5-R392X, TLR5-N592S and TLR6-S249P were determined in 350 controls and 328 UC patients by PCR-RFLP and sequencing. Cytokine levels were measured by ELISA in blood plasma samples. Data were analyzed statistically by SPSS software. RESULTS: TLR5 variants R392X and N592S showed significant association (p = 0.007, 0.021) with UC patients but TLR 1, 2, 3, 6 variants did not show any association. Unlike other studies carried out in different ethnic groups, TLR 6 (S249P) SNP was universally present in our population irrespective of disease. Genotype-phenotype correlation analysis revealed that the patients having combination of multiple SNPs both in TLR5 and TLR4 gene suffered from severe disease condition and diagnosed at an early age. The level of TNFα (p = 0.004), IL-6 (p = 0.0001) and IFNγ (p = 0.006) significantly increased in patients as compared to controls having wild genotypes for the studied SNPs. However, there was decreased level of TNFα (p = 0.014), IL-6 (p = 0.028) and IFNγ (p = 0.001) in patients carrying TLR5-R392X variant as compared to wild type patients. Patients carrying two simultaneous SNPs D299G in TLR4 gene and N592S in TLR5 gene showed significant decrease in the levels of TNFα (p = 0.011) and IFNγ (p = 0.016). CONCLUSION: Polymorphisms in TLR 5 genes were significantly associated with the UC in North Indian population. The cytokine level was significantly modulated in patients with different genotypes of TLR4 and TLR5 SNPs.


Assuntos
Povo Asiático/genética , Colite Ulcerativa/genética , Citocinas/sangue , Polimorfismo de Nucleotídeo Único , Receptor 5 Toll-Like/genética , Adolescente , Adulto , Idoso , Alelos , Sequência de Bases , Estudos de Casos e Controles , Criança , Colite Ulcerativa/patologia , Demografia , Feminino , Frequência do Gene , Estudos de Associação Genética , Loci Gênicos , Genótipo , Humanos , Índia , Interferon gama/sangue , Interleucina-6/sangue , Masculino , Pessoa de Meia-Idade , Fator de Necrose Tumoral alfa/sangue , Adulto Jovem
14.
J Clin Gastroenterol ; 47(9): 773-80, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23470644

RESUMO

BACKGROUND: Toll-like receptor 4 (TLR4) is a key cell surface receptor which recognizes lipopolysaccharide that leads to activation of innate immune system. Association of single nucleotide polymorphisms (SNPs) in TLR4 gene with the inflammatory bowel disease is influenced by ethnicity of the study population. GOAL: To study association of SNPs in TLR4 gene in inflammatory bowel disease patients and to explore the influence of these SNPs on the level of mRNA expression of targeted cytokines in the ulcerative colitis (UC) biopsies. METHODS: Two polymorphisms of TLR4 (D299G, T399I) gene were genotyped by PCR-RFLP in 199 UC, 46 Crohn's disease (CD) patients, and 201 healthy controls. Expression of inflammatory cytokines was measured by RT-PCR in UC biopsies. Genotypes and allele frequencies were calculated by the Pearson χ test, Fisher exact test, Student t test, and ANOVA. RESULTS: TLR4 variant D299G showed significant association, with UC (P=0.009) and CD (P=0.039). T399I showed significant association with UC (P=0.006) but not with CD patients. Transcription of TLR4 (P=0.0006), tumor necrosis factor-α (P=0.0009), interferon-γ (P=0.028), interleukin (IL)-17 (P=0.01), IL-23 (P=0.0034), and IL-10 (P=0.018) were found to be significantly elevated in UC patients as compared to controls. Among UC patients, AG genotype of D299G was associated with decreased mRNA level of TLR4 (P=0.0069), tumor necrosis factor-α (P=0.018), IL-17 (P=0.017), and IL-23 (P=0.011) as compared to AA genotype patients. In GG genotype interferon-γ expression (P=0.014) was significantly decreased as compared to AA genotype. CONCLUSION: Polymorphisms in TLR4 gene were significantly associated with inflammatory bowel disease in North Indian population and they contribute in modulating transcription of inflammatory cytokines during UC leading to aberrant immune response.


Assuntos
Colite Ulcerativa/genética , Doença de Crohn/genética , Citocinas/genética , Receptor 4 Toll-Like/genética , Adolescente , Adulto , Análise de Variância , Estudos de Casos e Controles , Colite Ulcerativa/imunologia , Colite Ulcerativa/patologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Feminino , Genótipo , Humanos , Índia , Mediadores da Inflamação/metabolismo , Masculino , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Polimorfismo de Nucleotídeo Único , RNA Mensageiro , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...