Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Environ Sci Pollut Res Int ; 31(31): 43492-43523, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38713351

RESUMO

Photoluminescent carbon dots (CDs) have garnered significant interest owing to their distinctive optical and electronic properties. In contrast to semiconductor quantum dots, which incorporated toxic elements in their composition, CDs have emerged as a promising alternative, rendering them suitable for both environmental and biological applications. CDs exhibit astonishing features, including photoluminescence, charge transfer, quantum confinement effect, and biocompatibility. Recently, CDs derived from green sources have drawn a lot of attention due to their strong photostability, reduced toxicity, better biocompatibility, enhanced fluorescence, and simplicity. These attributes have shown great promise in the areas of LED technology, bioimaging, photocatalysis, drug delivery, biosensing, and antibacterial activity. In contrast, this review offers a comprehensive overview of various green sources utilized to produce CDs and methodologies, along with their merits and demerits, with a notable emphasis on physiochemical properties. Additionally, the paper provides insight into the bibliometric analysis and recent advancements of CDs in sensing, photocatalysis, and antibacterial activity. In this field, extensive research is underway, and a total of 7,438 articles have been identified. Among these, 4242 articles are dedicated to sensing applications, while 1518 and 1678 focus on adsorption and degradation. Carbon dots demonstrate exceptional sensing capabilities within the nanomolar range with a selectivity of up to 95% for pollutants. They exhibit excellent degradation efficiency exceeding 90% within 10-130 min and possess an adsorption capacity from 100 to 800 mg/g. These fascinating qualities render them suitable for diverse applications.


Assuntos
Carbono , Poluentes Ambientais , Pontos Quânticos , Carbono/química , Pontos Quânticos/química , Poluentes Ambientais/química , Monitoramento Ambiental , Recuperação e Remediação Ambiental/métodos
2.
PeerJ ; 12: e17177, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38563005

RESUMO

Background: Plants have been pivotal in traditional and modern medicine globally, with historical evidence supporting their therapeutic applications. Nigella (Nigella sativa L.) is an annual herbaceous plant of the Ranunculaceae family and is cultivated in the Middle East, Eastern Europe, and Western and Central Asia. The medicinal use of plants dates back thousands of years, documented in ancient writings from various civilizations. Alkaloids, phenolics, saponins, flavonoids, terpenoids, anthraquinones, and tannins found in plants exhibit antioxidant, immunomodulatory, anti-inflammatory, anticancer, antibacterial, and antidiabetic activities. Methodology: This study specifically examines the pharmacological potential of Nigella sativa L., emphasizing thymoquinone-a compound with diverse nutraceutical benefits. The extraction, characterization, and quantification of thymoquinone, alongside other physicochemical parameters, were carried out using ethanol through Soxhlet extraction procedures on five nigella varieties. HPLC analysis was performed to determine the maximum accumulation of thymoquinone in the released variety of the plant and the chemical composition of the seed oil isolated from Nigella sativa L., varieties utilized in the study was determined through GC-MS analysis. Results: The research revealed that the Ajmer nigella-20 variety stands out, exhibiting elevated levels of thymoquinone (0.20 ± 0.07%), antioxidants (76.18 ± 1.78%), and substantial quantities of total phenols (31.85 ± 0.97 mg GAEg-1 seed) and flavonoids (8.150 ± 0.360 mg QE 100 g-1 seed) compared to other varieties. The GC-MS profiling showed the presence of 11 major compounds in the studied varieties, with p-cymene, longifolene, and myristic acid identified as the major chemical compounds present in the oil. Conclusion: The observed variations among Nigella varieties indicate the Ajmer nigella-20 variety as particularly promising for thymoquinone and bioactive compound extraction. This study underscores Nigella's potential as a source of pharmacologically active compounds, highlighting the need for further exploration in therapeutic applications.


Assuntos
Benzoquinonas , Nigella sativa , Nigella , Nigella sativa/química , Extratos Vegetais/farmacologia , Cromatografia Gasosa-Espectrometria de Massas , Flavonoides
3.
Biodegradation ; 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-37926750

RESUMO

The present study was proposed with the idea to screen and isolate efficient low-density polyethylene (LDPE) degrading novel bacterial strains from the plastic-contaminated dumping site. The identification of the bacterial isolate was performed with the help of microbiological and molecular characterization approaches. The screening of the best isolate was performed based on its growth in Bushnell-Hass broth supplemented with LDPE sheets as the sole carbon source. The molecular characterization revealed that the isolate WD4 showed a similarity with the Pseudomonas aeruginosa species. A comparative analysis of Pseudomonas aeruginosa WD4 identified in the current study with Pseudomonas putida MTCC 2445 strain was performed. The present study demonstrated that the bacterial isolate showed 9.2% degradation of LDPE films while Pseudomonas putida revealed a 6.5% weight reduction after 100 days of incubation at 37 °C. The end products of the LDPE degradation were analysed using Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectrometry (GC-MS). The LDPE degradation products eluted include fatty acids such as octadecanoic, hexadecanoic acid, dodecanal, and octyl palmitoleate, alkanes, and some of the unknown compounds after 100 days of microbial treatment with the isolated strain. The detailed analysis of the by-products generated in the current study indicates their contribution to the biochemical pathway of LDPE degradation. The profound scope lies in the scalability of these bacterial strains at the industrial level to combat the LDPE waste and similar plastic garbage problems, globally.

4.
Genomics Inform ; 21(2): e17, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37415452

RESUMO

Coronavirus has left severe health impacts on the human population, globally. Still a significant number of cases are reported daily as no specific medications are available for its effective treatment. The presence of the CD147 receptor (human basigin) on the host cell facilitates the severe acute respiratory disease coronavirus 2 (SARS-CoV-2) infection. Therefore, the drugs that efficiently alter the formation of CD147 and spike protein complex could be the right drug candidate to inhibit the replication of SARS-CoV-2. Hence, an e-Pharmacophore model was developed based on the receptor-ligand cavity of CD147 protein which was further mapped against pre-existing drugs of coronavirus disease treatment. A total of seven drugs were found to be suited as pharmacophores out of 11 drugs screened which was further docked with CD147 protein using CDOCKER of Biovia discovery studio. The active site sphere of the prepared protein was 101.44, 87.84, and 97.17 along with the radius being 15.33 and the root-mean-square deviation value obtained was 0.73 Å. The protein minimization energy was calculated to be -30,328.81547 kcal/mol. The docking results showed ritonavir as the best fit as it demonstrated a higher CDOCKER energy (-57.30) with correspond to CDOCKER interaction energy (-53.38). However, authors further suggest in vitro studies to understand the potential activity of the ritonavir.

5.
Front Environ Sci Eng ; 16(12): 161, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35874797

RESUMO

The abundance of synthetic polymers has increased due to their uncontrolled utilization and disposal in the environment. The recalcitrant nature of plastics leads to accumulation and saturation in the environment, which is a matter of great concern. An exponential rise has been reported in plastic pollution during the corona pandemic because of PPE kits, gloves, and face masks made up of single-use plastics. The physicochemical methods have been employed to degrade synthetic polymers, but these methods have limited efficiency and cause the release of hazardous metabolites or by-products in the environment. Microbial species, isolated from landfills and dumpsites, have utilized plastics as the sole source of carbon, energy, and biomass production. The involvement of microbial strains in plastic degradation is evident as a substantial amount of mineralization has been observed. However, the complete removal of plastic could not be achieved, but it is still effective compared to the preexisting traditional methods. Therefore, microbial species and the enzymes involved in plastic waste degradation could be utilized as eco-friendly alternatives. Thus, microbial biodegradation approaches have a profound scope to cope with the plastic waste problem in a cost-effective and environmental-friendly manner. Further, microbial degradation can be optimized and combined with physicochemical methods to achieve substantial results. This review summarizes the different microbial species, their genes, biochemical pathways, and enzymes involved in plastic biodegradation.

6.
Int J Food Microbiol ; 365: 109538, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35093768

RESUMO

The population growth, along with lifestyle changes, has resulted in unprecedented levels of food waste at all phases of the supply chain, including harvest, packing, transportation, and consumption. Conventional practices involve dumping of food waste with municipal garbage. However, these methods have serious environmental and health consequences. Food waste has a great recycling perspective due to its high biodegradability and water content, making it an ideal substrate for the production of biofuels and other industrially important chemicals including pigments, enzymes, organic acids, and essential oils. This review extensively covers conversion of food waste to generate bioenergy which will help to reduce environmental pollution and facilitate implementation of a circular bioeconomy. Moreover, review also highlights novel technologies like supercritical fluid extraction, ultra-sonication, pressurized liquid extraction, and microwave assisted extractions that are being employed in food waste management to increase the efficiency of value-added product recovery in an economically viable manner. Metabolic engineering of microorganisms for specificity of product would be a future breakthrough in food waste valorization/management.


Assuntos
Eliminação de Resíduos , Gerenciamento de Resíduos , Biocombustíveis , Alimentos , Reciclagem
7.
Biomass Convers Biorefin ; 12(3): 949-966, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33520587

RESUMO

The circular economy is at the core of sustainable development. The generation of biogas from the massive quantity of agricultural waste biomass is one of the critical drivers of the circular economy. Biogas has enormous renewable energy potential and has multitudes of applications in today's energy-intensive society. Oil cakes, a known Agri-waste, are the by-product of oil processing, and are rich in nutrients. The edible oil cakes mostly have been used as a cattle feed; however, non-edible oil cakes do not find many applications. Their production is continuously escalating as non-edible oils are increasingly used in biodiesel production. Recently, there is a lot of emphasis on biogas production from these oil cakes. This paper reviews in detail biogas production from both edible and non-edible oil cakes. Chemical composition and various other applications of the cakes are also reviewed in brief. The survey illustrates that multiple parameters such as inoculum sources, co-digestion and reactor design affect the biogas production. All those factors, along with biogas upgrading and the economy of the process, are reviewed. Finally, future research opportunities are suggested to improve the viability of the biogas production from oil cakes.

8.
Nat Prod Res ; 36(22): 5852-5857, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34937445

RESUMO

Androgenic alopecia is caused due to genetic disorders associated with the excess level of androgens. The progressive miniaturization of the hair follicles leads the terminal hair to vellus transformation. Dihydrotestosterone, an endogenous sex-linked hormone responsible for the growth of facial hair in males is derived from testosterone circulating in the blood by the action of 5α-reductase isoenzymes. The 5α-reductase1 is found in secretory regions of skin encompassing sebaceous glands and hair follicles. In silico screening of phytochemical inhibitors of 5α-reductase1 identified potential candidates for androgenic alopecia treatment. Further, the molecular docking simulation-based virtual screening of 110 phytochemicals was performed against human 5α-reductase1 to identify the potential lead molecules. The ADMET studies for the lead compounds were undertaken and the results showed that ß-sitosterol, brassicasterol, and campesterol could be potential inhibitors of 5α-reductase1. Molecular dynamics simulations of protein-lead molecule complex revealed that, ß-sitosterol and brassicasterol complex showed better stability with RMSD similar to raw protein. These compounds could be used as lead molecules in drug development for androgenic alopecia.


Assuntos
Alopecia , Colestenona 5 alfa-Redutase , Masculino , Humanos , Simulação de Acoplamento Molecular , Alopecia/tratamento farmacológico , Alopecia/etiologia , Cabelo , Oxirredutases
9.
J Basic Microbiol ; 56(4): 369-78, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26755240

RESUMO

Industrial effluents contaminated sites may serve as repositories of ecologically adapted efficient pyrene degrading bacteria. In the present study, six bacterial isolates from industrial effluents were purified using serial enrichment technique and their pyrene degrading potential on pyrene supplemented mineral salt medium was assessed. 16S rRNA sequence analysis showed that they belong to four bacterial genera, namely Acinetobacter, Bacillus, Microbacterium, and Ochrobactrum. Among these isolates, Bacillus megaterium YB3 showed considerably good growth and was further evaluated for its pyrene-degrading efficiency. B. megaterium YB3 could degrade 72.44% of 500 mg L(-1) pyrene within 7 days. GC-MS analysis of ethyl acetate extracted fractions detected two relatively less toxic metabolic intermediates of the pyrene degradation pathway. B. megaterium YB3 also tested positive for catechol 1, 2-dioxygenase and aromatic-ring-hydroxylating dioxygenase indole-indigo conversion assays. Considering the ability and efficiency of B. megaterium YB3 to degrade high pyrene content, the strain can be used as a tool to develop bioremediation technologies for the effective biodegradation of pyrene and possibly other PAHs in the environment.


Assuntos
Bacillus megaterium/isolamento & purificação , Bacillus megaterium/metabolismo , Pirenos/metabolismo , Microbiologia do Solo , Poluentes do Solo/metabolismo , Acetatos/química , Bacillus megaterium/enzimologia , Bacillus megaterium/genética , Biodegradação Ambiental , Catecol 1,2-Dioxigenase/análise , Dioxigenases/análise , Ativação Enzimática , Índigo Carmim/metabolismo , Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Pirenos/química , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA