Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Clin Exp Ophthalmol ; 50(9): 1057-1064, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36177965

RESUMO

BACKGROUND: The aim was to explore the feasibility and safety of performing common surgical steps in epiretinal membrane (ERM) peeling using the Preceyes Surgical System (PSS). METHODS: In a tertiary centre, 15 pseudophakic patients with an idiopathic ERM were randomised to robot-assistance or manual surgery in a 2:1 ratio. In the robot-assisted group, the following steps were performed using PSS: (1) staining the internal limiting membrane (ILM), (2) removal of the dye, (3) creating an ILM flap, (4) completing the peeling, (5) holding a light pipe and (6) fluid-air exchange. Primary outcome measures were feasibility and safety. Secondary outcome measures were duration, best-corrected visual acuity (BCVA) and central retinal thickness (CRT). Moreover, the distance travelled by the instrument during peeling was assessed using motion tracking software. RESULTS: All steps performed with PSS were feasible with no clinical adverse events or complications. The surgical time was longer in the robot-assisted group (mean 56 min, SD = 12 vs. 24 min, SD = 5). During the study, the duration of robot-assisted surgeries decreased from 72 to 46 min. The distance travelled by the forceps was shorter in the robot-assisted group (mean 403 mm, SD = 186 vs. 550 mm, SD = 134). BCVA and CRT improved equally in both groups. CONCLUSIONS: This is the world's first randomised controlled trial on robotic surgery for ERM. Although more time-consuming, we found that several surgical steps were feasible with assistance of the PSS.


Assuntos
Membrana Epirretiniana , Robótica , Anormalidades da Pele , Humanos , Vitrectomia , Acuidade Visual , Resultado do Tratamento , Membrana Epirretiniana/cirurgia , Estudos Retrospectivos , Tomografia de Coerência Óptica
2.
Acta Ophthalmol ; 97(7): 672-678, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30588753

RESUMO

PURPOSE: Compare accuracy and precision in XYZ of stationary and dynamic tasks performed by surgeons with and without the use of a tele-operated robotic micromanipulator in a simulated vitreoretinal environment. The tasks were performed using a surgical microscope or while observing a video monitor. METHOD: Two experienced and two novice surgeons performed tracking and static tasks at a fixed depth with hand-held instruments on a Preceyes Surgical System R0.4. Visualization was through a standard microscope or a video display. The distances between the instrument tip and the targets (in µm) determined tracking errors in accuracy and precision. RESULTS: Using a microscope, dynamic or static accuracy and precision in XY (planar) movements were similar among test subjects. In Z (depth) movements, experience lead to more precision in both dynamic and static tasks (dynamic 35 ± 14 versus 60 ± 37 µm; static 27 ± 8 versus 36 ± 10 µm), and more accuracy in dynamic tasks (58 ± 35 versus 109 ± 79 µm). Robotic assistance improved both precision and accuracy in Z (1-3 ± 1 µm) in both groups. Using a video screen in combination with robotic assistance improved all performance measurements and reduced any differences due to experience. CONCLUSIONS: Robotics increases precision and accuracy, with greater benefit observed in less experienced surgeons. However, human control was a limiting factor in the achieved improvement. A major limitation was visualization of the target surface, in particular in depth. To maximize the benefit of robotic assistance, visualization must be optimized.


Assuntos
Competência Clínica , Educação de Pós-Graduação em Medicina/métodos , Oftalmologia/educação , Doenças Retinianas/cirurgia , Robótica/educação , Telemedicina/métodos , Cirurgia Vitreorretiniana/educação , Humanos , Reprodutibilidade dos Testes , Robótica/métodos , Gravação em Vídeo , Cirurgia Vitreorretiniana/métodos
3.
Br J Ophthalmol ; 100(12): 1742-1746, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27688592

RESUMO

PURPOSE: Retinal vein occlusions (RVO) are a major cause of vision loss in people aged 50 years and older. Current therapeutic options limit the consequences of RVO but do not eliminate the cause. Cannulation of the involved vessel and removal of the clot may provide a more permanent solution with a less demanding follow-up. However, cannulation of smaller retinal veins remains challenging. This paper explores the use of ocriplasmin (recombinant plasmin without its kringles) to clear RVO, using a robotic micromanipulator. METHODS: Branch RVO were induced in a porcine model with rose bengal followed by 532 nm endolaser to the superior venous branch of the optic nerve. The vein was cannulated proximal to the occlusion or beyond the first branching vessel from the obstruction. The vein was infused with a physiologic citric acid buffer solution (CAM) or CAM/ocriplasmin. The time of cannulation, number of attempts, and the ability to release the thrombus were recorded. RESULTS: Cannulation and infusion was possible in all the cases. The use of a micromanipulator allowed for a consistent cannulation of the retinal vein and positional stability allowed the vein to remain cannulated for up to 20 min. In none of the attempts (5/5) with CAM did the thrombus dissolve, despite repeat infusion/relaxation cycles. In 7/7 injections of CAM/ocriplasmin near to the point of obstruction, the clot started to dissolve within a few minutes of injection. An infusion, attempted beyond the first venous branch point proximal to the clot, was unsuccessful in 2/3 attempts. CONCLUSIONS: Ocriplasmin is effective in resolving RVO if injected close to the site of occlusion with the use of a micromanipulator.


Assuntos
Fibrinolisina/administração & dosagem , Fragmentos de Peptídeos/administração & dosagem , Oclusão da Veia Retiniana/tratamento farmacológico , Animais , Modelos Animais de Doenças , Angiofluoresceinografia , Fundo de Olho , Injeções Intravenosas , Veia Retiniana , Oclusão da Veia Retiniana/diagnóstico , Robótica/métodos , Suínos
4.
PLoS One ; 11(9): e0162037, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27676261

RESUMO

PURPOSE: To develop a methodology for cannulating porcine retinal venules using a robotic assistive arm after inducing a retinal vein occlusion using the photosensitizer rose bengal. METHODOLOGY: Retinal vein occlusions proximal to the first vascular branch point were induced following intravenous injection of rose bengal by exposure to 532nm laser light delivered by slit-lamp or endolaser probe. Retinal veins were cannulated by positioning a glass catheter tip using a robotically controlled micromanipulator above venules with an outer diameter of 80µm or more and performing a preset piercing maneuver, controlled robotically. The ability of a balanced salt (BSS) solution to remove an occlusion by repeat distention of the retinal vein was also assessed. RESULTS: Cannulation using the preset piercing program was successful in 9 of 9 eyes. Piercing using the micromanipulator under manual control was successful in only 24 of 52 attempts, with several attempts leading to double piercing. The best location for cannulation was directly proximal to the occlusion. Infusion of BSS did not result in the resolution of the occlusion. CONCLUSION: Cannulation of venules using a robotic microassistive arm can be achieved with consistency, provided the piercing is robotically driven. The model appears robust enough to allow testing of therapeutic strategies aimed at eliminating a retinal vein thrombus and its evolution over time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...