Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38891821

RESUMO

CAR-T cell therapy is at the forefront of next-generation multiple myeloma (MM) management, with two B-cell maturation antigen (BCMA)-targeted products recently approved. However, these products are incapable of breaking the infamous pattern of patient relapse. Two contributing factors are the use of BCMA as a target molecule and the artificial scFv format that is responsible for antigen recognition. Tackling both points of improvement in the present study, we used previously characterized VHHs that specifically target the idiotype of murine 5T33 MM cells. This idiotype represents one of the most promising yet challenging MM target antigens, as it is highly cancer- but also patient-specific. These VHHs were incorporated into VHH-based CAR modules, the format of which has advantages compared to scFv-based CARs. This allowed a side-by-side comparison of the influence of the targeting domain on T cell activation. Surprisingly, VHHs previously selected as lead compounds for targeted MM radiotherapy are not the best (CAR-) T cell activators. Moreover, the majority of the evaluated VHHs are incapable of inducing any T cell activation. As such, we highlight the importance of specific VHH selection, depending on its intended use, and thereby raise an important shortcoming of current common CAR development approaches.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Animais , Imunoterapia Adotiva/métodos , Camundongos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Linhagem Celular Tumoral , Anticorpos Anti-Idiotípicos/imunologia , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Antígeno de Maturação de Linfócitos B/imunologia , Antígeno de Maturação de Linfócitos B/metabolismo , Cadeias Pesadas de Imunoglobulinas/imunologia , Cadeias Pesadas de Imunoglobulinas/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Domínio Único/imunologia , Anticorpos de Domínio Único/química , Ativação Linfocitária/imunologia
2.
Front Immunol ; 15: 1389018, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38720898

RESUMO

Introduction: Multiple myeloma (MM) remains incurable, despite the advent of chimeric antigen receptor (CAR)-T cell therapy. This unfulfilled potential can be attributed to two untackled issues: the lack of suitable CAR targets and formats. In relation to the former, the target should be highly expressed and reluctant to shedding; two characteristics that are attributed to the CS1-antigen. Furthermore, conventional CARs rely on scFvs for antigen recognition, yet this withholds disadvantages, mainly caused by the intrinsic instability of this format. VHHs have been proposed as valid scFv alternatives. We therefore intended to develop VHH-based CAR-T cells, targeting CS1, and to identify VHHs that induce optimal CAR-T cell activation together with the VHH parameters required to achieve this. Methods: CS1-specific VHHs were generated, identified and fully characterized, in vitro and in vivo. Next, they were incorporated into second-generation CARs that only differ in their antigen-binding moiety. Reporter T-cell lines were lentivirally transduced with the different VHH-CARs and CAR-T cell activation kinetics were evaluated side-by-side. Affinity, cell-binding capacity, epitope location, in vivo behavior, binding distance, and orientation of the CAR-T:MM cell interaction pair were investigated as predictive parameters for CAR-T cell activation. Results: Our data show that the VHHs affinity for its target antigen is relatively predictive for its in vivo tumor-tracing capacity, as tumor uptake generally decreased with decreasing affinity in an in vivo model of MM. This does not hold true for their CAR-T cell activation potential, as some intermediate affinity-binding VHHs proved surprisingly potent, while some higher affinity VHHs failed to induce equal levels of T-cell activation. This could not be attributed to cell-binding capacity, in vivo VHH behavior, epitope location, cell-to-cell distance or binding orientation. Hence, none of the investigated parameters proved to have significant predictive value for the extent of CAR-T cell activation. Conclusions: We gained insight into the predictive parameters of VHHs in the CAR-context using a VHH library against CS1, a highly relevant MM antigen. As none of the studied VHH parameters had predictive value, defining VHHs for optimal CAR-T cell activation remains bound to serendipity. These findings highlight the importance of screening multiple candidates.


Assuntos
Imunoterapia Adotiva , Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Anticorpos de Domínio Único , Mieloma Múltiplo/imunologia , Mieloma Múltiplo/terapia , Humanos , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Anticorpos de Domínio Único/imunologia , Imunoterapia Adotiva/métodos , Animais , Linhagem Celular Tumoral , Camundongos , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Família de Moléculas de Sinalização da Ativação Linfocitária/imunologia , Família de Moléculas de Sinalização da Ativação Linfocitária/metabolismo , Anticorpos de Cadeia Única/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Sci Rep ; 13(1): 18995, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923822

RESUMO

Blockade of the immune checkpoint axis consisting of programmed death-1 (PD-1) and its ligand PD-L1 alleviates the functional inhibition of tumor-infiltrating lymphoid cells yet weakly induces their expansion. Exogenous cytokines could further expand lymphoid cells and thus synergize with αPD-L1 therapy. However, systemic delivery of most cytokines causes severe toxicity due to unspecific expansion of immune cells in the periphery. Here, we modelled local delivery of cytokines and αPD-L1 therapeutics to immune cell-containing in vitro melanoma tumors. Three-dimensional tumor models consisting of 624-MEL cells were co-cultured with human peripheral blood lymphoid cells (PBLs) in presence of the cytokines IL-2, IL-7, IL-15, IL-21 and IFN-γ. To model local gene therapy, melanoma tumors were modified with lentiviral vectors encoding IL-15 fused to IL-15Rα (IL-15/IL-15Rα) and K2-Fc, a fusion of a human PD-L1 specific single domain antibody to immunoglobulin (Ig)G1 Fc. To evaluate the interplay between PBL fractions, NK cells, CD4+ T cells or CD8+ T cells were depleted. Tumor cell killing was followed up using real time imaging and immune cell expansion and activation was evaluated with flow cytometry. Among the tested cytokines, IL-15 was the most potent cytokine in stimulating tumor cell killing and expanding both natural killer (NK) cells and CD8+ T cells. Gene-based delivery of IL-15/IL-15Rα to tumor cells, shows expansion of NK cells, activation of NK cells, CD4+ and CD8+ T cells, and killing of tumor spheroids. Both NK cells and CD8+ T cells are necessary for tumor cell killing and CD4+ T-cell activation was reduced without NK cells. Co-delivery of K2-Fc improved tumor cell killing coinciding with increased activation of NK cells, which was independent of bystander T cells. CD4+ or CD8+ T cells were not affected by the co-delivery of K2-Fc even though NK-cell activation impacted CD4+ T-cell activation. This study demonstrates that gene-based delivery of IL-15/IL-15Rα to tumor cells effectively mediates anti-tumor activity and sensitizes the tumor microenvironment for therapy with αPD-L1 therapeutics mainly by impacting NK cells. These findings warrant further investigation of gene-based IL-15 and K2-Fc delivery in vivo.


Assuntos
Linfócitos T CD8-Positivos , Melanoma , Humanos , Antígeno B7-H1/genética , Interleucina-15/genética , Células Matadoras Naturais , Melanoma/genética , Melanoma/terapia , Citocinas/farmacologia , Terapia Genética , Linfócitos T CD4-Positivos , Microambiente Tumoral
4.
Front Immunol ; 14: 1268900, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37799715

RESUMO

Introduction: T cell Ig and ITIM domain receptor (TIGIT) is a next-generation immune checkpoint predominantly expressed on activated T cells and NK cells, exhibiting an unfavorable prognostic association with various malignancies. Despite the emergence of multiple TIGIT-blocking agents entering clinical trials, only a fraction of patients responded positively to anti-TIGIT therapy. Consequently, an urgent demand arises for noninvasive techniques to quantify and monitor TIGIT expression, facilitating patient stratification and enhancing therapeutic outcomes. Small antigen binding moieties such as nanobodies, are promising candidates for such tracer development. Methods: We generated a panel of anti-human or anti-mouse TIGIT nanobodies from immunized llamas. In addition, we designed a single-chain variable fragment derived from the clinically tested monoclonal antibody Vibostolimab targeting TIGIT, and assessed its performance alongside the nanobodies. In vitro characterization studies were performed, including binding ability and affinity to cell expressed or recombinant TIGIT. After Technetium-99m labeling, the nanobodies and the single-chain variable fragment were evaluated in vivo for their ability to detect TIGIT expression using SPECT/CT imaging, followed by ex vivo biodistribution analysis. Results: Nine nanobodies were selected for binding to recombinant and cell expressed TIGIT with low sub-nanomolar affinities and are thermostable. A six-fold higher uptake in TIGIT-overexpressing tumor was demonstrated one hour post- injection with Technetium-99m labeled nanobodies compared to an irrelevant control nanobody. Though the single-chain variable fragment exhibited superior binding to TIGIT-expressing peripheral blood mononuclear cells in vitro, its in vivo behavior yielded lower tumor-to-background ratios at one hour post- injection, indicating that nanobodies are better suited for in vivo imaging than the single-chain variable fragment. Despite the good affinity, high specificity and on-target uptake in mice in this setting, imaging of TIGIT expression on tumor- infiltrating lymphocytes within MC38 tumors remained elusive. This is likely due to the low expression levels of TIGIT in this model. Discussion: The excellent affinity, high specificity and rapid on-target uptake in mice bearing TIGIT- overexpressing tumors showed the promising diagnostic potential of nanobodies to noninvasively image high TIGIT expression within the tumor. These findings hold promise for clinical translation to aid patient selection and improve therapy response.


Assuntos
Neoplasias , Anticorpos de Cadeia Única , Anticorpos de Domínio Único , Animais , Camundongos , Humanos , Tecnécio , Anticorpos de Domínio Único/química , Distribuição Tecidual , Leucócitos Mononucleares , Tomografia Computadorizada de Emissão de Fóton Único , Neoplasias/diagnóstico por imagem , Receptores Imunológicos
5.
Int Rev Cell Mol Biol ; 369: 143-199, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35777863

RESUMO

Cancer is a heterogeneous disease, requiring treatment tailored to the unique phenotype of the patient's tumor. Monoclonal antibodies (mAbs) and variants thereof have enabled targeted therapies to selectively target cancer cells. Cancer cell-specific mAbs have been used for image-guided surgery and targeted delivery of radionuclides or toxic agents, improving classical treatment strategies. Cancer cell-specific mAbs can further inhibit tumor cell growth or can stimulate immune-mediated destruction of cancer cells, a feature that has also been achieved through mAb-mediated manipulation of immune cells and pathways. Drawbacks of mAbs and their variants, together with the discovery of camelid heavy chain-only antibodies and the many advantageous features of their variable domains, referred to as VHHs, single domain antibodies or nanobodies (Nbs), resulted in the exploration of Nbs as an alternative targeting moiety. We therefore review the state-of-the-art as well as novel exploitation strategies of Nbs for targeted cancer therapy.


Assuntos
Neoplasias , Anticorpos de Domínio Único , Anticorpos Monoclonais , Humanos , Neoplasias/tratamento farmacológico , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/uso terapêutico
6.
Med Res Rev ; 42(1): 306-342, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34028069

RESUMO

Immuno-oncology has been at the forefront of cancer treatment in recent decades. In particular immune checkpoint and chimeric antigen receptor (CAR)-T cell therapy have achieved spectacular results. Over the years, CAR-T cell development has followed a steady evolutionary path, focusing on increasing T cell potency and sustainability, which has given rise to different CAR generations. However, there was less focus on the mode of interaction between the CAR-T cell and the cancer cell; more specifically on the targeting moiety used in the CAR and its specific properties. Recently, the importance of optimizing this domain has been recognized and the possibilities have been exploited. Over the last 10 years-in addition to the classical scFv-based CARs-single domain CARs, natural receptor-ligand CARs, universal CARs and CARs targeting more than one antigen have emerged. In addition, the specific parameters of the targeting domain and their influence on T cell activation are being examined. In this review, we concisely present the history of CAR-T cell therapy, and then expand on various developments in the CAR ectodomain. We discuss different formats, each with their own advantages and disadvantages, as well as the developments in affinity tuning, avidity effects, epitope location, and influence of the extracellular spacer.


Assuntos
Imunoterapia Adotiva , Neoplasias , Humanos , Imunoterapia Adotiva/métodos , Neoplasias/terapia , Linfócitos T
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...