Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11517-11525, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38100378

RESUMO

Nanoresonators are powerful and versatile tools promising to revolutionize a wide range of technological areas by delivering unparalleled performance in physical, chemical, biological sensing, signal and information processing, quantum computation, etc., via their high-frequency resonant vibration and rich dynamic behavior. Having the ability to tune the resonance frequency and dynamic behavior at the application stage promises further improvement in their effectiveness and enables novel applications. However, achieving significant room-temperature tunability in conventional (monolithically fabricated) nanoresonators is considered challenging. Here we demonstrate ultrawide electrostatic tuning (∼70%) of (initial) resonance-frequency (∼7% V-1) at room temperature in a monolithically fabricated ultrathin Si nanoresonator (width ∼ 40 nm, length ∼ 200 µm) device. Extreme electrostatic tuning of nonlinear behavior is also demonstrated by canceling the cubic-nonlinear coefficient and subsequently flipping its sign. Thus, these results are expected to provide remarkable operational flexibility and new capabilities to microfabricated resonators, which will benefit many technological areas.

2.
Microsyst Nanoeng ; 8: 33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35371537

RESUMO

Controlling fluid flow in capillaric circuits is a key requirement to increase their uptake for assay applications. Capillary action off-valves provide such functionality by pushing an occluding bubble into the channel using a difference in capillary pressure. Previously, we utilized the binary switching mode of this structure to develop a powerful set of fundamental fluidic valving operations. In this work, we study the transistor-like qualities of the off-valve and provide evidence that these structures are in fact functionally complementary to electronic junction field effect transistors. In view of this, we propose the new term capillaric field effect transistor to describe these types of valves. To support this conclusion, we present a theoretical description, experimental characterization, and practical application of analog flow resistance control. In addition, we demonstrate that the valves can also be reopened. We show modulation of the flow resistance from fully open to pinch-off, determine the flow rate-trigger channel volume relationship and demonstrate that the latter can be modeled using Shockley's equation for electronic transistors. Finally, we provide a first example of how the valves can be opened and closed repeatedly.

3.
Lab Chip ; 21(1): 205-214, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33295906

RESUMO

Capillary systems are a promising technology for point-of-care microfluidics, since they are pre-programmable and self-powered. This work introduces "off valves" as a key building block for capillaric circuits, providing easy-to-use, multi-purpose valving functionality and autonomous flow control. To this end we present a set of switching valve designs that use trigger channels and liquid input alone to close or open connections between channels in a highly controllable fashion. The key element of all these valve designs is a new off trigger valve, which is characterised in detail here and holds the potential for transistor-like switching and resistance tuning. As an example for the potential applications of switching valves, we demonstrate how they can be used for flow resistance control in a complex microfluidic circuit and for sequential chemical loading into a reaction chamber. Use of the switching valves for the latter in particular allowed for the tuning of incubation times and volumetric measurement, thus confirming applicability of the valves for automated and self-powered immunoassays in point-of-care environments.


Assuntos
Dispositivos Lab-On-A-Chip , Microfluídica , Imunoensaio , Sistemas Automatizados de Assistência Junto ao Leito , Pressão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...