Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chempluschem ; 84(3): 302-306, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-31950761

RESUMO

A novel approach for the synthesis of Fe(0) nanoparticles (NPs) with tunable sizes and shapes is reported. Ultrasmall Fe(0) NPs were reacted under mild conditions in the presence of a mixture of palmitic acid and amine ligands. These NPs acted not only as preformed seeds but also as an internal iron(II) source that was produced by the partial dissolution of the NPs by the acid. This fairly simple approach allows the strict separation of the nucleation and the growth steps. By changing the acid concentration, a fine tuning of the relative ratio between the remaining Fe(0) seeds and the iron(II) reservoir was achieved, giving access to both size (from 7 to 20 nm) and shape (spheres, cubes or stars) control. The partial dissolution of the ultrasmall Fe(0) NPs into iron(II) source and the successive growth was further studied by using combined TEM and Mössbauer spectroscopy. The successive corrosion, coalescence, and ripening observed could be understood in the framework of an environment-dependent growth model.

2.
Nano Lett ; 15(10): 6952-7, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26407034

RESUMO

The different spin configurations in the vicinity of the single-domain/vortex transition are reported in isolated magnetic nanoparticles. By combining chemical synthesis, electron holography in a dedicated transmission electron microscope and micromagnetic simulations, we establish the "magnetic configurations vs size" phase diagram of Fe single-crystalline nanocubes. Room temperature high resolution magnetic maps reveal the transition between single-domain and vortex states for Fe nanocubes from 25 to 27 nm, respectively. An intermediate spin configuration consisting of an ⟨111⟩ vortex is for the first time evidenced.

3.
Nano Lett ; 15(5): 3241-8, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25867032

RESUMO

Addition of Co2(Co)9 and Ru3(CO)12 on preformed monodisperse iron(0) nanoparticles (Fe(0) NPs) at 150 °C under H2 leads to monodisperse core-shell Fe@FeCo NPs and to a thin discontinuous Ru(0) layer supported on the initial Fe(0) NPs. The new complex NPs were studied by state-of-the-art transmission electron microscopy techniques as well as X-ray diffraction, Mössbauer spectroscopy, and magnetic measurements. These particles display large heating powers (SAR) when placed in an alternating magnetic field. The combination of magnetic and surface catalytic properties of these novel objects were used to demonstrate a new concept: the possibility of performing Fischer-Tropsch syntheses by heating the catalytic nanoparticles with an external alternating magnetic field.

4.
Nano Lett ; 12(9): 4722-8, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22845848

RESUMO

We report a tunable organometallic synthesis of monodisperse iron carbide and core/shell iron/iron carbide nanoparticles displaying a high magnetization and good air-stability. This process based on the decomposition of Fe(CO)(5) on Fe(0) seeds allows the control of the amount of carbon diffused and therefore the tuning of nanoparticles magnetic anisotropy. This results in unprecedented hyperthermia properties at moderate magnetic fields, in the range of medical treatments.


Assuntos
Compostos Inorgânicos de Carbono/química , Hipertermia Induzida/métodos , Compostos de Ferro/química , Nanopartículas Metálicas/química , Nanopartículas Metálicas/efeitos da radiação , Compostos Inorgânicos de Carbono/efeitos da radiação , Impedância Elétrica , Compostos de Ferro/efeitos da radiação , Campos Magnéticos , Teste de Materiais , Tamanho da Partícula
5.
Nano Lett ; 11(12): 5128-34, 2011 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-22098424

RESUMO

We report on room temperature magnetoresistance in networks of chemically synthesized metallic Fe nanoparticles surrounded by two types of organic barriers. Electrical properties, featuring Coulomb blockade, and magnetotransport measurements show that this magnetoresistance arises from spin-dependent tunnelling, so the organic ligands stabilizing the nanoparticles are efficient spin-conservative tunnel barrier. These results demonstrate the feasibility of an all-chemistry approach for room temperature spintronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...