Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Dent Res ; 100(11): 1258-1264, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34334033

RESUMO

The persisting outbreak of SARS-CoV-2 has posed an enormous threat to global health. The sustained human-to-human transmission of SARS-CoV-2 via respiratory droplets makes the medical procedures around the perioral area vulnerable to the spread of the disease. Such procedures include the ultrasonic dental cleaning method, which occurs within the oral cavity and involves cavitation-induced sprays, thus increasing the risk of pathogen transmission via advection. To understand the associated health and safety risks for patients and clinicians, it is critical to understand the flow pattern of the spray cloud around the operating region, the size and velocity distribution of the emitted droplets, and the extent of fluid dispersion until ultimate deposit on surfaces or escape through air vents. In this work, the droplet size and velocity distributions of the spray emerging from the tip of a free-standing common ultrasonic dental cleaning device were characterized via high-speed imaging. Deionized water and 1.5% and 3% aqueous hydrogen peroxide (H2O2) solutions were used as working fluids, with the H2O2-an established oxidizing agent-intended to curb the survival of virus released in aerosols generated from dental procedures. The measurements reveal that the presence of H2O2 in the working fluid increases the mean droplet size and ejection velocity. Detailed computational fluid dynamic simulations with multiphase flow models reveal benefits of adding small amounts of H2O2 in the feed stream of the ultrasonic cleaner; this practice causes larger droplets with shorter residence times inside the clinic before settling down or escaping through air vents. The results suggest optimal benefits (in terms of fluid spread) of adding 1.5% H2O2 in the feed stream during dental procedures involving ultrasonic tools. The present findings are not specific to the COVID-19 pandemic but should also apply to future outbreaks caused by airborne droplet transmission.


Assuntos
Anti-Infecciosos Locais , COVID-19 , Aerossóis , Humanos , Peróxido de Hidrogênio/efeitos adversos , Pandemias , SARS-CoV-2
2.
Langmuir ; 26(12): 10243-9, 2010 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-20151666

RESUMO

Thermosensitive hydrogels are materials which globally shrink/swell in water when the surrounding temperature crosses the lower critical solution temperature (LCST). We demonstrate here a novel class of cross-linked polymeric materials, which do not shrink/swell in water globally, but nevertheless reveal a hydrogel-like, stimuli-responsive behavior. In particular, they demonstate a positive thermosensitive release of the embedded fluorescent dye significantly modulated when temperature crosses the LCST. Using staining with copper, transmission electron microscopy and energy dispersive X-ray analysis, we show that this effect is associated with nanogel "raisins" dispersed in such materials (e.g., polymer nanofibers). Shrinkage of individual nanogel "raisins" at elevated temperatures increases nanoporosity via increased exposure of the existing nanopores to water, or formation of new nanopores/nanocracks in the overstretched polymer matrix in the vicinity of shrinking nanogel "raisins". As a result, the release rate of the embedded dye from the nanofibers increases at elevated temperatures. We suggest that similar functional materials with embedded nanogel "raisins" will find applications in nanofluidics and as drug carriers for controlled drug release.


Assuntos
Hidrogéis/química , Temperatura , Portadores de Fármacos , Corantes Fluorescentes , Microfluídica , Água/química
3.
Mol Pharm ; 6(2): 641-7, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19718809

RESUMO

Therapeutic proteins have emerged as a significant class of pharmaceutical agents over the past several decades. The potency, rapid elimination, and systemic side effects have prompted the need of spatiotemporally controlled release for proteins maybe more than any other active therapeutic molecules. This work examines the release of two model protein compounds, bovine serum albumin (BSA) and an anti-integrin antibody (AI), from electrospun polycaprolactone (PCL) nanofiber mats. The anti-integrin antibody was chosen as a model of antibody therapy; in particular, anti-integrin antibodies are a promising class of therapeutic molecules for cancer and angiogenic diseases. The release kinetics were studied experimentally and interpreted in the framework of a recently published theory of desorption-limited drug release from nondegrading--or very slowly degrading--fibers. The results are consistent with a protein release mechanism dominated by desorption from the polymer surface, while the polycaprolactone nanofibers are not degrading at an appreciable rate.


Assuntos
Anticorpos Monoclonais/metabolismo , Endotélio Vascular/metabolismo , Integrina alfaVbeta3/imunologia , Nanoestruturas , Poliésteres/química , Polímeros/química , Soroalbumina Bovina/metabolismo , Animais , Anticorpos Monoclonais/química , Bovinos , Endotélio Vascular/citologia , Humanos , Soroalbumina Bovina/química , Veias Umbilicais/citologia , Veias Umbilicais/metabolismo
4.
Nanotechnology ; 20(27): 275706, 2009 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-19531856

RESUMO

A wide array of technological applications requires localized high-rate delivery of dissolved compounds (in particular, biological ones), which can be achieved by forcing the solutions or suspensions of such compounds through nano or microtubes and their bundled assemblies. Using a water-soluble compound, the fluorescent dye Rhodamine 610 chloride, frequently used as a model drug release compound, it is shown that deposit buildup on the inner walls of the delivery channels and its adverse consequences pose a severe challenge to implementing pressure-driven long-term fluidic delivery through nano and microcapillaries, even in the case of such homogeneous solutions. Pressure-driven delivery (3-6 bar) of homogeneous dye solutions through macroscopically-long (approximately 1 cm) carbon nano and microtubes with inner diameters in the range 100 nm-1 microm and their bundled parallel assemblies is studied experimentally and theoretically. It is shown that the flow delivery gradually shifts from fast convection-dominated (unobstructed) to slow jammed convection, and ultimately to diffusion-limited transport through a porous deposit. The jamming/clogging phenomena appear to be rather generic: they were observed in a wide concentration range for two fluorescent dyes in carbon nano and microtubes, as well as in comparable transparent glass microcapillaries. The aim of the present work is to study the physics of jamming, rather than the chemical reasons for the affinity of dye molecules to the tube walls.


Assuntos
Microfluídica/métodos , Nanotubos de Carbono/química , Fenômenos Químicos , Desenho de Equipamento , Microscopia Eletrônica de Transmissão , Nanotubos de Carbono/ultraestrutura , Polímeros/química , Polimetil Metacrilato/química , Poli-Inos/química , Rodaminas/química , Soluções/química
5.
Langmuir ; 24(3): 965-74, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18076196

RESUMO

This work examines the release of a model water-soluble compound from electrospun polymer nanofiber assemblies. Such release attracts attention in relation to biomedical applications, such as controlled drug delivery. It is also important for stem cell attachment and differentiation on biocompatible electrospun nanofiber scaffolds containing growth factors, which have been encapsulated by means of electrospinning. Typically, the release mechanism has been attributed to solid-state diffusion of the encapsulated compound from the fibers into the surrounding aqueous bath. Under this assumption, a 100% release of the encapsulated compound is expected in a certain (long) time. The present work focuses on certain cases where complete release does not happen, which suggests that solid-state diffusion may not be the primary mechanism at play. We show that in such cases the release rate can be explained by desorption of the embedded compound from nanopores in the fibers or from the outer surface of the fibers in contact with the water bath. After release, the water-soluble compound rapidly diffuses in water, whereas the release rate is determined by the limiting desorption stage. A model system of Rhodamine 610 chloride fluorescent dye embedded in electrospun monolithic poly(methylmethacrylate) (PMMA) or poly(caprolactone) (PCL) nanofibers, in nanofibers electrospun from PMMA/PCL blends, or in core-shell PMMA/PCL nanofibers is studied. Both the experimental results and theory point at the above mentioned desorption-related mechanism, and the predicted characteristic time, release rate, and effective diffusion coefficient agree fairly well with the experimental data. A practically important outcome of this surface release mechanism is that only the compound on the fiber and pore surfaces can be released, whereas the material encapsulated in the bulk cannot be freed within the time scales characteristic of the present experiments (days to months). Consequently, in such cases, complete release is impossible. We also demonstrate how the release rate can be manipulated by the polymer content and molecular weight affecting nanoporosity and the desorption enthalpy, as well as by the nanofiber structure (monolithic fibers, fibers from polymer blends, and core-shell fibers). In particular, it is shown that, by manipulating the above parameters, release times from tens of hours to months can be attained.

6.
J Colloid Interface Sci ; 294(2): 343-54, 2006 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-16111687

RESUMO

Line evaporation of dense nanoparticle suspensions is studied theoretically and experimentally. The 2-D lines are drawn by a pen-like nozzle continuously dispensing a commercially available concentrated organic suspension (50 wt%; 4.3 vol%) of 5 nm gold nanoparticles in toluene solvent. Such particle-containing lines show promise for industrial applications where circuits are inkjet-printed and heat-treated to dry off the organic solvent and sinter the nanoparticles, thus producing a continuous electrically conducting path. The employed nanosuspension displays spontaneous thickening upon contact with a solid surface in the ambient atmosphere, and thus does not dry according to the well-established coffee-stain forming mechanism applicable to dilute particle suspensions. In the present work, model lines ( approximately 1 mm width) are studied to elucidate the drying peculiarities of such nanoparticle slurries. These scaled-up lines allow detailed spatial measurements of their topography throughout their prolonged evaporation period, and make possible direct comparisons between experiment and theory. The results show the particle deposits formed by evaporative drying of these lines to be of non-uniform thickness with a dent in the middle of the lateral cross-section. Formation of this practically undesirable landscape is attributed to the highly non-uniform evaporative character of sessile or pendent liquid lines, which results in a non-uniform consolidation of the porous phase formed upon contact with the solid surface. The formulated description of the shape changing process, as done in the framework of the consolidation theory, yields predicted deposit speck shapes that compare favorably with the temporally resolved experimental data.

7.
J Colloid Interface Sci ; 276(2): 379-91, 2004 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-15271566

RESUMO

An oscillating capillary jet method is implemented to measure surface tension of aqueous nonionic surfactant solutions as a function of surface age from the jet orifice. The experimental technique captures the evolution of jet swells and necks continuously along the jet propagation axis and is used in conjunction with an existing linear, axisymmetric, constant-property model to determine surface tension of liquids. The method is first validated using deionized water and isopropyl alcohol (constant surface tension test fluids) and a procedure is described to identify the optimum wavelength from the breakup point, which produces the smallest error in surface tension measurements. Dynamic surface tension data of concentrated aqueous Tergitol NP-8 surfactant solutions is then presented. The measurements are performed over a spatial length of approximately 1.5 wavelengths, a span corresponding to 0.6-4.2 ms time window from the jet orifice. Submillisecond surface age measurements are made possible by decreasing the jet diameter. Increased surfactant concentrations make the liquid jet more stable and allow measurements at higher surface ages. The correlation of Hua and Rosen fits well the dynamic surface tension data, which includes submillisecond surface ages. Finally, the time required for surface tension to reach equilibrium levels is estimated using a simple adsorption kinetics theory of surfactant molecules on the liquid/air interface.

8.
Appl Opt ; 30(33): 4747-54, 1991 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-20717277

RESUMO

The absorption, scattering, and differential scattering cross sections are presented for polydisperse aggregates of prescribed fractal dimension and uniform primary particle size. These optical properties are formulated for polydisperse aggregates in terms of the primary particle diameter, the appropriate moments of the discrete size distribution function, and the mean-square radius of gyration. The absorption and scattering cross sections are compared with Rayleigh theory in the small size limit and with the results of the computational simulations of Mountain and Mulholland [Langmuir 4, 1321 (1988)] for intermediate and large aggregates. The differential scattering cross sections are well correlated by the law of Guinier together with a power-law expression for the larger sizes. The cross sections that are described herein apply in particular to polydisperse fractallike aggregates that are formed by cluster-cluster aggregation and possess a size scale that is pertinent to laboratory experiments and industrial processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...