Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 106
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomater Sci ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39258483

RESUMO

Macrophages are usually present in solid tumors where they participate in tumor progression, angiogenesis, immunosuppression and metastasis. The design of nanocarriers capable of delivering therapeutic agents to specific cell populations has received considerable attention in the last decades. However, the capacity of many of these nanosystems to deliver multiple therapeutic agents with very different chemical properties is more limited. Herein, a novel multitasking nanoplatform capable of delivering large macromolecules and cytotoxic drugs to macrophages is presented. This novel nanosystem has exhibited excellent skills in performing simultaneous tasks, macrophage depletion and glucose starvation, maintaining the oxygen levels in the tissue. This nanodevice is composed of a dual-pore mesoporous silica core with the capacity to house small cytotoxic drugs, such as doxorubicin or zoledronic acid, and large macromolecules, such as glucose oxidase. The external surface of the silica core was coated with a lipid bilayer to avoid the premature release of the housed drugs. Finally, polymeric nanocapsules loaded with catalase were covalently anchored on the outer lipid bilayer, and carboxy-mannose was attached to the exposed side of the nanocapsules to provide selectivity to the macrophages. These nanoassemblies were able to transport enzymes (Gox and CAT), maintaining their catalytic activity. Therefore, they could induce glucose starvation, keeping the oxygen levels in the tissue, owing to the tandem enzymatic reaction. The capacity of these nanoassemblies to deliver therapeutic agents to macrophages was evaluated both in static and under flow conditions, showing a rapid capture of the nanoparticles by the macrophages. Once there, the nanoassemblies also exhibited excellent capacity to induce potent macrophage depletion. This strategy can be directly adapted for the treatment of different malignancies due to the modular nature of the nanoplatform, which can be loaded with different therapeutic agent combinations and pave the way for the development of personalized nanomedicines for diverse types of tumors.

2.
Biochem Pharmacol ; 229: 116512, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39222713

RESUMO

HIV-1 infection is efficiently controlled by the antiretroviral treatment (ART) but viral persistence in long-lived reservoirs formed by CD4 + T cells and macrophages impedes viral eradication and creates a chronic inflammatory environment. Dasatinib is a tyrosine kinase inhibitor clinically used against chronic myeloid leukemia (CML) that has also showed an anti-inflammatory potential. We previously reported that dasatinib is very efficient at interfering with HIV-1 infection of CD4 + T cells by preserving the antiviral activity of SAMHD1, an innate immune factor that blocks T-cell activation and proliferation and that is inactivated by phosphorylation at T592 (pSAMHD1). We observed that short-term treatment in vitro with dasatinib significantly reduced pSAMHD1 in monocyte-derived macrophages (MDMs) isolated from people with HIV (PWH) and healthy donors, interfering with HIV-1 infection. This inhibition was based on low levels of 2-LTR circles and proviral integration, while viral reverse transcription was not affected. MDMs isolated from people with CML on long-term treatment with dasatinib also showed low levels of pSAMHD1 and were resistant to HIV-1 infection. In addition, dasatinib decreased the inflammatory potential of MDMs by reducing the release of M1-related cytokines like TNFα, IL-1ß, IL-6, CXCL8, and CXCL9, but preserving the antiviral activity through normal levels of IL-12 and IFNγ. Due to the production of M2-related anti-inflammatory cytokines like IL-1RA and IL-10 was also impaired, dasatinib appeared to interfere with MDMs differentiation. The use of dasatinib along with ART could be used against HIV-1 reservoir in CD4 and macrophages and to alleviate the chronic inflammation characteristic of PWH.

3.
J Immunother Cancer ; 12(8)2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39214651

RESUMO

BACKGROUND: Activating and inhibitory receptors of natural killer (NK) cells such as NKp, NKG2, or CLEC are highly relevant to cold tumors including glioblastoma (GBM). Here, we aimed to characterize the expression of these receptors in GBM to gain insight into their potential role as modulators of the intratumoral microenvironment. METHODS: We performed a transcriptomic analysis of several NK receptors with a focus on the activating receptor encoded by KLRC2, NKG2C, among bulk and single-cell RNA sequencing GBM data sets. We also evaluated the effects of KLRC2-overexpressing GL261 cells in mice treated with or without programmed cell death protein-1 (PD-1) monoclonal antibody (mAb). Finally, we analyzed samples from two clinical trials evaluating PD-1 mAb effects in patients with GBM to determine the potential of NKG2C to serve as a biomarker of response. RESULTS: We observed significant expression of several inhibitory NK receptors on GBM-infiltrating NK and T cells, which contrasts with the strong expression of KLRC2 on tumor cells, mainly at the infiltrative margin. Neoplastic KLRC2 expression was associated with a reduction in the number of myeloid-derived suppressor cells and with a higher level of tumor-resident lymphocytes. A stronger antitumor activity after PD-1 mAb treatment was observed in NKG2Chigh-expressing tumors both in mouse models and patients with GBM whereas the expression of inhibitory NK receptors showed an inverse association. CONCLUSIONS: This study explored the role of neoplastic NKG2C/KLRC2 expression in shaping the immune profile of GBM and suggests that it is a predictive biomarker for positive responses to immune checkpoint inhibitor treatment in patients with GBM. Future studies could further validate this finding in prospective trials.


Assuntos
Glioblastoma , Imunoterapia , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Glioblastoma/imunologia , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Animais , Subfamília C de Receptores Semelhantes a Lectina de Células NK/metabolismo , Imunoterapia/métodos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Feminino , Microambiente Tumoral
4.
Cells ; 13(16)2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39195280

RESUMO

The combination of cyclin-dependent kinase 4/6 inhibitors (CDK4/6i) with endocrine therapy (ET) is the standard-of-care for estrogen receptor (ER)-positive, HER2-negative (ER+/HER2- advanced/metastatic breast cancer (mBC). However, the impact of CDK4/6i on circulating immune cells and circulating tumor cells (CTCs) in patients receiving CDK4/6i and ET (CDK4/6i+ET) remains poorly understood. This was a prospective cohort study including 44 patients with ER+/HER2- mBC treated with CDK4/6i+ET in either first or second line. Peripheral blood samples were collected before (baseline) and 3 months (t2) after therapy. Immune cell's subsets were quantified by flow cytometry, and microfluidic-captured CTCs were counted and classified according to the expression of cytokeratin and/or vimentin. Patients were categorized according to response as responders (progression-free survival [PFS] ≥ 6.0 months; 79.1%) and non-responders (PFS < 6.0 months; 20.9%). CDK4/6i+ET resulted in significant changes in the hematological parameters, including decreased hemoglobin levels and increased mean corpuscular volume, as well as reductions in neutrophil, eosinophil, and basophil counts. Specific immune cell subsets, such as early-stage myeloid-derived suppressor cells, central memory CD4+ T cells, and Vδ2+ T cells expressing NKG2D, decreased 3 months after CDK4/6i+ET. Additionally, correlations between the presence of CTCs and immune cell populations were observed, highlighting the interplay between immune dysfunction and tumor dissemination. This study provides insights into the immunomodulatory effects of CDK4/6i+ET, underscoring the importance of considering immune dynamics in the management of ER+/HER2- mBC.


Assuntos
Neoplasias da Mama , Quinase 4 Dependente de Ciclina , Quinase 6 Dependente de Ciclina , Células Neoplásicas Circulantes , Inibidores de Proteínas Quinases , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/sangue , Feminino , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/efeitos dos fármacos , Células Neoplásicas Circulantes/metabolismo , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Idoso , Metástase Neoplásica , Adulto , Estudos Prospectivos
5.
Cell Rep ; 43(7): 114494, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39003739

RESUMO

Cell cycle progression is regulated by the orderly balance between kinase and phosphatase activities. PP2A phosphatase holoenzymes containing the B55 family of regulatory B subunits function as major CDK1-counteracting phosphatases during mitotic exit in mammals. However, the identification of the specific mitotic roles of these PP2A-B55 complexes has been hindered by the existence of multiple B55 isoforms. Here, through the generation of loss-of-function genetic mouse models for the two ubiquitous B55 isoforms (B55α and B55δ), we report that PP2A-B55α and PP2A-B55δ complexes display overlapping roles in controlling the dynamics of proper chromosome individualization and clustering during mitosis. In the absence of PP2A-B55 activity, mitotic cells display increased chromosome individualization in the presence of enhanced phosphorylation and perichromosomal loading of Ki-67. These data provide experimental evidence for a regulatory mechanism by which the balance between kinase and PP2A-B55 phosphatase activity controls the Ki-67-mediated spatial organization of the mass of chromosomes during mitosis.


Assuntos
Antígeno Ki-67 , Mitose , Proteína Fosfatase 2 , Animais , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Camundongos , Antígeno Ki-67/metabolismo , Fosforilação , Cromossomos de Mamíferos/metabolismo , Cromossomos de Mamíferos/genética , Cromossomos/metabolismo
6.
J Med Virol ; 96(7): e29752, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38949191

RESUMO

Antiviral signaling, immune response and cell metabolism are dysregulated by SARS-CoV-2, the causative agent of COVID-19. Here, we show that SARS-CoV-2 accessory proteins ORF3a, ORF9b, ORF9c and ORF10 induce a significant mitochondrial and metabolic reprogramming in A549 lung epithelial cells. While ORF9b, ORF9c and ORF10 induced largely overlapping transcriptomes, ORF3a induced a distinct transcriptome, including the downregulation of numerous genes with critical roles in mitochondrial function and morphology. On the other hand, all four ORFs altered mitochondrial dynamics and function, but only ORF3a and ORF9c induced a marked alteration in mitochondrial cristae structure. Genome-Scale Metabolic Models identified both metabolic flux reprogramming features both shared across all accessory proteins and specific for each accessory protein. Notably, a downregulated amino acid metabolism was observed in ORF9b, ORF9c and ORF10, while an upregulated lipid metabolism was distinctly induced by ORF3a. These findings reveal metabolic dependencies and vulnerabilities prompted by SARS-CoV-2 accessory proteins that may be exploited to identify new targets for intervention.


Assuntos
COVID-19 , Mitocôndrias , SARS-CoV-2 , Proteínas Virais , Humanos , Células A549 , COVID-19/metabolismo , COVID-19/virologia , COVID-19/patologia , Mitocôndrias/metabolismo , Fases de Leitura Aberta , SARS-CoV-2/genética , Transcriptoma , Proteínas Virais/genética , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Viroporinas/metabolismo
7.
EMBO J ; 43(6): 1043-1064, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38360996

RESUMO

Eukaryotic cells rely on several mechanisms to ensure that the genome is duplicated precisely once in each cell division cycle, preventing DNA over-replication and genomic instability. Most of these mechanisms limit the activity of origin licensing proteins to prevent the reactivation of origins that have already been used. Here, we have investigated whether additional controls restrict the extension of re-replicated DNA in the event of origin re-activation. In a genetic screening in cells forced to re-activate origins, we found that re-replication is limited by RAD51 and enhanced by FBH1, a RAD51 antagonist. In the presence of chromatin-bound RAD51, forks stemming from re-fired origins are slowed down, leading to frequent events of fork reversal. Eventual re-initiation of DNA synthesis mediated by PRIMPOL creates ssDNA gaps that facilitate the partial elimination of re-duplicated DNA by MRE11 exonuclease. In the absence of RAD51, these controls are abrogated and re-replication forks progress much longer than in normal conditions. Our study uncovers a safeguard mechanism to protect genome stability in the event of origin reactivation.


Assuntos
Proteínas de Ligação a DNA , Rad51 Recombinase , DNA/genética , Replicação do DNA , Proteínas de Ligação a DNA/metabolismo , Proteína Homóloga a MRE11/metabolismo , Rad51 Recombinase/genética , Rad51 Recombinase/metabolismo , Humanos
8.
mBio ; 15(1): e0254923, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38078728

RESUMO

IMPORTANCE: Cryptococcus neoformans is an excellent model to investigate fungal pathogenesis. This yeast can produce "titan cells," which are cells of an abnormally larger size that contribute to the persistence of the yeast in the host. In this work, we have used a new approach to characterize them by identifying drugs that inhibit this process. We have used a repurposing off-patent drug library, combined with an automatic method to image and analyze fungal cell size. In this way, we have identified many compounds that inhibit this transition. Interestingly, several compounds were antioxidants, allowing us to confirm that endogenous ROS and mitochondrial changes are important for titan cell formation. This work provides new evidence of the mechanisms required for titanization. Furthermore, the future characterization of the inhibitory mechanisms of the identified compounds by the scientific community will contribute to better understand the role of titan cells in virulence.


Assuntos
Criptococose , Cryptococcus neoformans , Saccharomyces cerevisiae , Criptococose/microbiologia , Virulência
9.
Int J Mol Sci ; 24(21)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37958666

RESUMO

Alzheimer's disease (AD), the most prevalent form of dementia, is a neurodegenerative disorder characterized by different pathological symptomatology, including disrupted circadian rhythm. The regulation of circadian rhythm depends on the light information that is projected from the retina to the suprachiasmatic nucleus in the hypothalamus. Studies of AD patients and AD transgenic mice have revealed AD retinal pathology, including amyloid-ß (Aß) accumulation that can directly interfere with the regulation of the circadian cycle. Although the cause of AD pathology is poorly understood, one of the main risk factors for AD is female gender. Here, we found that female APP/PS1 mice at 6- and 12-months old display severe circadian rhythm disturbances and retinal pathological hallmarks, including Aß deposits in retinal layers. Since brain Aß transport is facilitated by aquaporin (AQP)4, the expression of AQPs were also explored in APP/PS1 retina to investigate a potential correlation between retinal Aß deposits and AQPs expression. Important reductions in AQP1, AQP4, and AQP5 were detected in the retinal tissue of these transgenic mice, mainly at 6-months of age. Taken together, our findings suggest that abnormal transport of Aß, mediated by impaired AQPs expression, contributes to the retinal degeneration in the early stages of AD.


Assuntos
Doença de Alzheimer , Precursor de Proteína beta-Amiloide , Camundongos , Humanos , Feminino , Animais , Lactente , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Camundongos Transgênicos , Retina/metabolismo , Aquaporina 4/genética , Expressão Gênica , Modelos Animais de Doenças , Presenilina-1/genética , Presenilina-1/metabolismo , Placa Amiloide/metabolismo
10.
Int J Mol Sci ; 24(21)2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37958782

RESUMO

Topoisomerase I (TopoI) in Streptococcus pneumoniae, encoded by topA, is a suitable target for drug development. Seconeolitsine (SCN) is a new antibiotic that specifically blocks this enzyme. We obtained the topARA mutant, which encodes an enzyme less active than the wild type (topAWT) and more resistant to SCN inhibition. Likely due to the essentiality of TopoI, we were unable to replace the topAWT allele by the mutant topARA version. We compared the in vivo activity of TopoIRA and TopoIWT using regulated overexpression strains, whose genes were either under the control of a moderately (PZn) or a highly active promoter (PMal). Overproduction of TopoIRA impaired growth, increased SCN resistance and, in the presence of the gyrase inhibitor novobiocin (NOV), caused lower relaxation than TopoIWT. Differential transcriptomes were observed when the topAWT and topARA expression levels were increased about 5-fold. However, higher increases (10-15 times), produced a similar transcriptome, affecting about 52% of the genome, and correlating with a high DNA relaxation level with most responsive genes locating in topological domains. These results confirmed that TopoI is indeed the target of SCN in S. pneumoniae and show the important role of TopoI in global transcription, supporting its suitability as an antibiotic target.


Assuntos
DNA Topoisomerases Tipo I , Transcriptoma , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Streptococcus pneumoniae/genética , DNA Girase/genética , DNA Girase/metabolismo , Antibacterianos/farmacologia
11.
Nanomaterials (Basel) ; 13(19)2023 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-37836370

RESUMO

An easy and low-cost way to fabricate monometallic Au nanoislands for plasmonic enhanced spectroscopy is presented. The method is based on direct thermal evaporation of Au on glass substrates to form nanoislands, with thicknesses between 2 and 15 nm, which are subsequently covered by a thin layer of silicon dioxide. We have used HR-SEM and AFM to characterize the nanoislands, and their optical transmission reveals strong plasmon resonances in the visible. The plasmonic performance of the fabricated substrates has been tested in fluorescence and Raman scattering measurements of two probe materials. Enhancement factors up to 1.8 and 9×104 are reported for confocal fluorescence and Raman microscopies, respectively, which are comparable to others obtained by more elaborated fabrication procedures.

12.
Int J Mol Sci ; 24(17)2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37686114

RESUMO

Gold nanorods are the most commonly used nanoparticles in photothermal therapy for cancer treatment due to their high efficiency in converting light into heat. This study aimed to investigate the efficacy of gold nanorods of different sizes (large and small) in eliminating two types of cancer cell: melanoma and glioblastoma cells. After establishing the optimal concentration of nanoparticles and determining the appropriate time and power of laser irradiation, photothermal therapy was applied to melanoma and glioblastoma cells, resulting in the highly efficient elimination of both cell types. The efficiency of the PTT was evaluated using several methods, including biochemical analysis, fluorescence microscopy, and flow cytometry. The dehydrogenase activity, as well as calcein-propidium iodide and Annexin V staining, were employed to determine the cell viability and the type of cell death triggered by the PTT. The melanoma cells exhibited greater resistance to photothermal therapy, but this resistance was overcome by irradiating cells at physiological temperatures. Our findings revealed that the predominant cell-death pathway activated by the photothermal therapy mediated by gold nanorods was apoptosis. This is advantageous as the presence of apoptotic cells can stimulate antitumoral immunity in vivo. Considering the high efficacy of these gold nanorods in photothermal therapy, large nanoparticles could be useful for biofunctionalization purposes. Large nanorods offer a greater surface area for attaching biomolecules, thereby promoting high sensitivity and specificity in recognizing target cancer cells. Additionally, large nanoparticles could also be beneficial for theranostic applications, involving both therapy and diagnosis, due to their superior detection sensitivity.


Assuntos
Glioblastoma , Melanoma , Humanos , Glioblastoma/terapia , Terapia Fototérmica , Morte Celular , Ouro
13.
Nat Commun ; 14(1): 2779, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37188705

RESUMO

Reversible and sub-lethal stresses to the mitochondria elicit a program of compensatory responses that ultimately improve mitochondrial function, a conserved anti-aging mechanism termed mitohormesis. Here, we show that harmol, a member of the beta-carbolines family with anti-depressant properties, improves mitochondrial function and metabolic parameters, and extends healthspan. Treatment with harmol induces a transient mitochondrial depolarization, a strong mitophagy response, and the AMPK compensatory pathway both in cultured C2C12 myotubes and in male mouse liver, brown adipose tissue and muscle, even though harmol crosses poorly the blood-brain barrier. Mechanistically, simultaneous modulation of the targets of harmol monoamine-oxidase B and GABA-A receptor reproduces harmol-induced mitochondrial improvements. Diet-induced pre-diabetic male mice improve their glucose tolerance, liver steatosis and insulin sensitivity after treatment with harmol. Harmol or a combination of monoamine oxidase B and GABA-A receptor modulators extend the lifespan of hermaphrodite Caenorhabditis elegans or female Drosophila melanogaster. Finally, two-year-old male and female mice treated with harmol exhibit delayed frailty onset with improved glycemia, exercise performance and strength. Our results reveal that peripheral targeting of monoamine oxidase B and GABA-A receptor, common antidepressant targets, extends healthspan through mitohormesis.


Assuntos
Envelhecimento , Antidepressivos , Harmina , Mitocôndrias , Mitofagia , Monoaminoxidase , Receptores de GABA-A , Harmina/análogos & derivados , Harmina/farmacologia , Antidepressivos/farmacologia , Mitocôndrias/efeitos dos fármacos , Mitofagia/efeitos dos fármacos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Quinases Proteína-Quinases Ativadas por AMP/metabolismo , Músculo Esquelético/efeitos dos fármacos , Fígado/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Resistência à Insulina , Intolerância à Glucose/metabolismo , Estado Pré-Diabético/metabolismo , Monoaminoxidase/metabolismo , Receptores de GABA-A/metabolismo , Longevidade/efeitos dos fármacos , Caenorhabditis elegans , Drosophila melanogaster , Fragilidade/prevenção & controle , Condicionamento Físico Animal , Modelos Animais , Masculino , Feminino , Animais , Camundongos , Fígado Gorduroso/metabolismo , Tecido Adiposo Marrom/efeitos dos fármacos
14.
Nat Commun ; 14(1): 3016, 2023 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-37230995

RESUMO

Protein methylation is an important modification beyond epigenetics. However, systems analyses of protein methylation lag behind compared to other modifications. Recently, thermal stability analyses have been developed which provide a proxy of a protein functional status. Here, we show that molecular and functional events closely linked to protein methylation can be revealed by the analysis of thermal stability. Using mouse embryonic stem cells as a model, we show that Prmt5 regulates mRNA binding proteins that are enriched in intrinsically disordered regions and involved in liquid-liquid phase separation mechanisms, including the formation of stress granules. Moreover, we reveal a non-canonical function of Ezh2 in mitotic chromosomes and the perichromosomal layer, and identify Mki67 as a putative Ezh2 substrate. Our approach provides an opportunity to systematically explore protein methylation function and represents a rich resource for understanding its role in pluripotency.


Assuntos
Histonas , Processamento de Proteína Pós-Traducional , Animais , Camundongos , Metilação , Histonas/metabolismo , Epigênese Genética , Células-Tronco Embrionárias Murinas/metabolismo
15.
Cell Mol Life Sci ; 80(6): 141, 2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37149819

RESUMO

BACKGROUND: Alzheimer's disease (AD) is a progressive, chronic, and neurodegenerative disease, and the most common cause of dementia worldwide. Currently, the mechanisms underlying the disease are far from being elucidated. Thus, the study of proteins involved in its pathogenesis would allow getting further insights into the disease and identifying new markers for AD diagnosis. METHODS: We aimed here to analyze protein dysregulation in AD brain by quantitative proteomics to identify novel proteins associated with the disease. 10-plex TMT (tandem mass tags)-based quantitative proteomics experiments were performed using frozen tissue samples from the left prefrontal cortex of AD patients and healthy individuals and vascular dementia (VD) and frontotemporal dementia (FTD) patients as controls (CT). LC-MS/MS analyses were performed using a Q Exactive mass spectrometer. RESULTS: In total, 3281 proteins were identified and quantified using MaxQuant. Among them, after statistical analysis with Perseus (p value < 0.05), 16 and 155 proteins were defined as upregulated and downregulated, respectively, in AD compared to CT (Healthy, FTD and VD) with an expression ratio ≥ 1.5 (upregulated) or ≤ 0.67 (downregulated). After bioinformatics analysis, ten dysregulated proteins were selected as more prone to be associated with AD, and their dysregulation in the disease was verified by qPCR, WB, immunohistochemistry (IHC), immunofluorescence (IF), pull-down, and/or ELISA, using tissue and plasma samples of AD patients, patients with other dementias, and healthy individuals. CONCLUSIONS: We identified and validated novel AD-associated proteins in brain tissue that should be of further interest for the study of the disease. Remarkably, PMP2 and SCRN3 were found to bind to amyloid-ß (Aß) fibers in vitro, and PMP2 to associate with Aß plaques by IF, whereas HECTD1 and SLC12A5 were identified as new potential blood-based biomarkers of the disease.


Assuntos
Doença de Alzheimer , Demência Frontotemporal , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/metabolismo , Demência Frontotemporal/genética , Proteômica , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos beta-Amiloides/metabolismo , Córtex Pré-Frontal/metabolismo , Biomarcadores , Proteínas tau/metabolismo
16.
Acta Neuropathol Commun ; 11(1): 55, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37004084

RESUMO

The circadian clock is synchronized to the 24 h day by environmental light which is transmitted from the retina to the suprachiasmatic nucleus (SCN) primarily via the retinohypothalamic tract (RHT). Circadian rhythm abnormalities have been reported in neurodegenerative disorders such as Alzheimer's disease (AD). Whether these AD-related changes are a result of the altered clock gene expression, retina degeneration, including the dysfunction in RHT transmission, loss of retinal ganglion cells and its electrophysiological capabilities, or a combination of all of these pathological mechanisms, is not known. Here, we evaluated transgenic APP/PS1 mouse model of AD and wild-type mice at 6- and 12-month-old, as early and late pathological stage, respectively. We noticed the alteration of circadian clock gene expression not only in the hypothalamus but also in two extra-hypothalamic brain regions, cerebral cortex and hippocampus, in APP/PS1 mice. These alterations were observed in 6-month-old transgenic mice and were exacerbated at 12 months of age. This could be explained by the reduced RHT projections in the SCN of APP/PS1 mice, correlating with downregulation of hypothalamic GABAergic response in APP/PS1 mice in advanced stage of pathology. Importantly, we also report retinal degeneration in APP/PS1 mice, including Aß deposits and reduced choline acetyltransferase levels, loss of melanopsin retinal ganglion cells and functional integrity mainly of inner retina layers. Our findings support the theory that retinal degeneration constitutes an early pathological event that directly affects the control of circadian rhythm in AD.


Assuntos
Doença de Alzheimer , Degeneração Retiniana , Camundongos , Animais , Doença de Alzheimer/patologia , Degeneração Retiniana/patologia , Retina/patologia , Camundongos Transgênicos , Ritmo Circadiano , Modelos Animais de Doenças , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo
17.
Int J Mol Sci ; 24(6)2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36983048

RESUMO

The DNA topoisomerases gyrase and topoisomerase I as well as the nucleoid-associated protein HU maintain supercoiling levels in Streptococcus pneumoniae, a main human pathogen. Here, we characterized, for the first time, a topoisomerase I regulator protein (StaR). In the presence of sub-inhibitory novobiocin concentrations, which inhibit gyrase activity, higher doubling times were observed in a strain lacking staR, and in two strains in which StaR was over-expressed either under the control of the ZnSO4-inducible PZn promoter (strain ΔstaRPZnstaR) or of the maltose-inducible PMal promoter (strain ΔstaRpLS1ROMstaR). These results suggest that StaR has a direct role in novobiocin susceptibility and that the StaR level needs to be maintained within a narrow range. Treatment of ΔstaRPZnstaR with inhibitory novobiocin concentrations resulted in a change of the negative DNA supercoiling density (σ) in vivo, which was higher in the absence of StaR (σ = -0.049) than when StaR was overproduced (σ = -0.045). We have located this protein in the nucleoid by using super-resolution confocal microscopy. Through in vitro activity assays, we demonstrated that StaR stimulates TopoI relaxation activity, while it has no effect on gyrase activity. Interaction between TopoI and StaR was detected both in vitro and in vivo by co-immunoprecipitation. No alteration of the transcriptome was associated with StaR amount variation. The results suggest that StaR is a new streptococcal nucleoid-associated protein that activates topoisomerase I activity by direct protein-protein interaction.


Assuntos
DNA Topoisomerases Tipo I , Streptococcus pneumoniae , Humanos , DNA Topoisomerases Tipo I/genética , DNA Topoisomerases Tipo I/metabolismo , Streptococcus pneumoniae/genética , Streptococcus pneumoniae/metabolismo , Novobiocina/farmacologia , DNA Bacteriano/genética , DNA Girase/genética , DNA Girase/metabolismo
18.
Traffic ; 23(12): 587-599, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36353954

RESUMO

Chromosomal region maintenance 1 (CRM1 also known as Xpo1 and exportin-1) is the receptor for the nuclear export controlling the intracellular localization and function of many cellular and viral proteins that play a crucial role in viral infections and cancer. The inhibition of CRM1 has emerged as a promising therapeutic approach to interfere with the lifecycle of many viruses, for the treatment of cancer, and to overcome therapy resistance. Recently, selinexor has been approved as the first CRM1 inhibitor for the treatment of multiple myeloma, providing proof of concept for this therapeutic option with a new mode of action. However, selinexor is associated with dose-limiting toxicity and hence, the discovery of alternative small molecule leads that could be developed as less toxic anticancer and antiviral therapeutics will have a significant impact in the clinic. Here, we report a CRM1 inhibitor discovery platform. The development of this platform includes reporter cell lines that monitor CRM1 activity by using red fluorescent protein or green fluorescent protein-labeled HIV-1 Rev protein with a strong heterologous nuclear export signal. Simultaneously, the intracellular localization of other proteins, to be interrogated for their capacity to undergo CRM1-mediated export, can be followed by co-culturing stable cell lines expressing fluorescent fusion proteins. We used this platform to interrogate the mode of nuclear export of several proteins, including PDK1, p110α, STAT5A, FOXO1, 3, 4 and TRIB2, and to screen a compound collection. We show that while p110α partially relies on CRM1-dependent nuclear export, TRIB2 is exported from the nucleus in a CRM1-independent manner. Compound screening revealed the striking activity of an organoselenium compound on the CRM1 nuclear export receptor.


Assuntos
HIV-1 , Transporte Ativo do Núcleo Celular , HIV-1/metabolismo , Carioferinas/metabolismo , Triazóis/metabolismo , Hidrazinas/farmacologia , Hidrazinas/metabolismo , Núcleo Celular/metabolismo
19.
Molecules ; 27(17)2022 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-36080182

RESUMO

Forkhead box O (FOXO) proteins are transcription factors involved in cancer and aging and their pharmacological manipulation could be beneficial for the treatment of cancer and healthy aging. FOXO proteins are mainly regulated by post-translational modifications including phosphorylation, acetylation and ubiquitination. As these modifications are reversible, activation and inactivation of FOXO factors is attainable through pharmacological treatment. One major regulatory input of FOXO signaling is mediated by protein kinases. Here, we use specific inhibitors against different kinases including PI3K, mTOR, MEK and ALK, and other receptor tyrosine kinases (RTKs) to determine their effect on FOXO3 activity. While we show that inhibition of PI3K efficiently drives FOXO3 into the cell nucleus, the dual PI3K/mTOR inhibitors dactolisib and PI-103 induce nuclear FOXO translocation more potently than the PI3Kδ inhibitor idelalisib. Furthermore, specific inhibition of mTOR kinase activity affecting both mTORC1 and mTORC2 potently induced nuclear translocation of FOXO3, while rapamycin, which specifically inhibits the mTORC1, failed to affect FOXO3. Interestingly, inhibition of the MAPK pathway had no effect on the localization of FOXO3 and upstream RTK inhibition only weakly induced nuclear FOXO3. We also measured the effect of the test compounds on the phosphorylation status of AKT, FOXO3 and ERK, on FOXO-dependent transcriptional activity and on the subcellular localization of other FOXO isoforms. We conclude that mTORC2 is the most important second layer kinase negatively regulating FOXO activity.


Assuntos
Fatores de Transcrição Forkhead , Serina-Treonina Quinases TOR , Proteína Forkhead Box O3/genética , Proteína Forkhead Box O3/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
20.
Clin Transl Med ; 12(8): e1001, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35979662

RESUMO

BACKGROUND: Comprehensive molecular studies on tumours are needed to delineate immortalization process steps and identify sensitive prognostic biomarkers in thyroid cancer. METHODS AND RESULTS: In this study, we extensively characterize telomere-related alterations in a series of 106 thyroid tumours with heterogeneous clinical outcomes. Using a custom-designed RNA-seq panel, we identified five telomerase holoenzyme-complex genes upregulated in clinically aggressive tumours compared to tumours from long-term disease-free patients, being TERT and TERC denoted as independent prognostic markers by multivariate regression model analysis. Characterization of alterations related to TERT re-expression revealed that promoter mutations, methylation and/or copy gains exclusively co-occurred in clinically aggressive tumours. Quantitative-FISH (fluorescence in situ hybridization) analysis of telomere lengths showed a significant shortening in these carcinomas, which matched with a high proliferative rate measured by Ki-67 immunohistochemistry. RNA-seq data analysis indicated that short-telomere tumours exhibit an increased transcriptional activity in the 5-Mb-subtelomeric regions, site of several telomerase-complex genes. Gene upregulation enrichment was significant for specific chromosome-ends such as the 5p, where TERT is located. Co-FISH analysis of 5p-end and TERT loci showed a more relaxed chromatin configuration in short telomere-length tumours compared to normal telomere-length tumours. CONCLUSIONS: Overall, our findings support that telomere shortening leads to a 5p subtelomeric region reorganization, facilitating the transcription and accumulation of alterations at TERT-locus.


Assuntos
Telomerase , Neoplasias da Glândula Tireoide , Humanos , Hibridização in Situ Fluorescente , Prognóstico , Telomerase/genética , Telomerase/metabolismo , Telômero/genética , Telômero/metabolismo , Neoplasias da Glândula Tireoide/diagnóstico , Neoplasias da Glândula Tireoide/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA