Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanotechnology ; 35(13)2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38134438

RESUMO

Currently, numerous articles are devoted to examining the influence of geometry and charge distribution on the mechanical properties and structural stability of piezoelectric nanowires (NWs). The varied modeling techniques adopted in earlier molecular dynamics (MD) works dictated the outcome of the different efforts. In this article, comprehensive MD studies are conducted to determine the influence of varied interatomic potentials (partially charged rigid ion model, [PCRIM] ReaxFF, charged optimized many-body [COMB], and Buckingham), geometrical parameters (cross-section geometry, wire diameter, and length), and charge distribution (uniform full charges versus partially charged surface atoms) on the resulting mechanical properties and structural stability of zinc oxide (ZnO) NWs. Our optimized parameters for the Buckingham interatomic potential are in good agreement with the existing experimental results. Furthermore, we found that the incorrect selection of interatomic potentials could lead to excessive overestimate (61%) of the elastic modulus of the NW. While NW length was found to dictate the strain distribution along the wire, impacting its predicted properties, the cross-section shape did not play a major role. Assigning uniform charges for both the core and surface atoms of ZnO NWs leads to a drastic decrease in fracture properties.

2.
Int J Mech Mater Des ; 16(3): 433-441, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38624538

RESUMO

In part I, we identified encapsulation, contamination suppression, and virus elimination as our three governing strategies for developing surfaces to combat the transmission and spread of COVID-19. We showed that our recent superhydrophobic nanocomposites has the potential of encapsulating and suppressing the virus so as to limit its transmission and spread. In this study, we examine the durability of the newly developed surfaces when subjected to elevated temperature, chemical attack and mechanical damage in the form of abrasion and compressive load. Extensive tests were conducted to reveal the effect of these parameters on the surface performance. Three aspects of the work were accordingly examined. The first was concerned with controlled thermal stability tests in which the surfaces were subjected to elevated temperatures approaching 350 °C for silicone-based nanocomposites and 150 °C for epoxy-based nanocomposites. The second was concerned with subjecting the surfaces to alkaline and acidic solutions with pH concentrations ranging between 1 and 13. Finally, the third involved surface damage by abrasion tests. Our results show clearly that the newly developed superhydrophobic surfaces are capable of resisting the adverse effects of thermal and chemical attacks as well as mechanical abrasion owing to the excellent structural stability and mechanical properties of the constituents of the nanocomposite. Moreover, our superhydrophobic monolith demonstrated exceptional regenerative capabilities even after being subjected to damaging compressive stresses of up to 10 MPa.

3.
Int J Mech Mater Des ; 16(3): 423-431, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-38624551

RESUMO

According to the World Health Organisation, one of the main concerns of COVID-19 virus is its tenacity to spread from droplets that either land directly on a surface or are transmitted to a surface by an infected person. In this study, we report the potential of using superhydrophobic surfaces to combat the transmission and spread of fomites infected by COVID-19 virus strand. Fomites include clothes, utensils, furniture, regularly touched objects and personal protective equipment used by Health Care Workers to act as barriers against fluid transmission and/or fluid penetration. In this effort, we propose three strategies to combat the transmission and the spread of the virus: encapsulation, contamination suppression, and elimination. We believe that this can be achieved by the use of our recently developed superhydrophobic coating and regenerative monolith to encapsulate and suppress the virus. The newly developed superhydrophobic coating and monolith are scalable, economical, and facile with the monolith capable of regeneration. The elimination of the virus will be through the use of antiviral and antibacterial copper nanoparticles or dedicated copper surfaces.

4.
Phys Chem Chem Phys ; 19(6): 4426-4434, 2017 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-28120958

RESUMO

Most existing molecular dynamics simulations in nanoreinforced composites assume carbon nanotubes (CNTs) to be straight and uniformly dispersed within thermoplastics. In reality, however, CNTs are typically curved, agglomerated and aggregated as a result of van der Waal interactions and electrostatic forces. In this paper, we account for both curvature and agglomeration of CNTs in extensive molecular dynamic (MD) simulations. The purpose of these simulations is to evaluate the influence of waviness and agglomeration of these curved and agglomerated CNTs on the interfacial strength of thermoset nanocomposite and upon their load transfer capability. Two aspects of the work were accordingly examined. In the first, realistic carbon nanotubes (CNTs) of the same length but varied curvatures were embedded in thermoset polymer composites and simulations of pull-out tests were conducted to evaluate the corresponding interfacial shear strength (ISS). In the second, the effect of the agglomerate size upon the ISS was determined using bundles of CNTs of different diameters. The results of our MD simulations revealed the following. The pull-out force of the curved CNTs is significantly higher than its straight counterpart and increases further with the increase in the waviness of the CNTs. This is attributed to the added pull-out energy dissipated in straightening the CNTs during the pull-out process. It also reveals that agglomeration of CNTs leads to a reduction in the ISS and poor load transferability, and that this reduction is governed by the size of the agglomerate. The simulation results were also used to develop a generalized relation for the ISS that takes into consideration the effect of waviness and agglomeration of CNTs of CNT-polymer composites.

5.
Proc Math Phys Eng Sci ; 472(2186): 20150597, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27118887

RESUMO

In this paper, we investigate the symmetric snap-through buckling and the asymmetric bifurcation behaviours of an initially curved functionally graded material (FGM) microbeam subject to the electrostatic force and uniform/non-uniform temperature field. The beam model is developed in the framework of Euler-Bernoulli beam theory, accounting for the through-thickness power law variation of the beam material and the physical neutral plane. Based on the Galerkin decomposition method, the beam model is simplified as a 2 d.f. reduced-order model, from which the necessary snap-through and symmetry breaking criteria are derived. The results of our work reveal the significant effects of the power law index on the snap-through and symmetry breaking criteria. Our results also reveal that the non-uniform temperature field can actuate the FGM microbeam and induce the snap-through and asymmetric bifurcation behaviours.

6.
Phys Chem Chem Phys ; 17(19): 12796-803, 2015 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-25907227

RESUMO

The buckling of hybrid boron nitride-carbon nanotubes (BN-CNTs) with various BN compositions and locations of the BN domain is investigated using molecular dynamics. We find that BN-CNTs with large BN composition (>38%) only undergo local shell-like buckling in their BN domain. Although similar local shell-like buckling can occur in BN-CNTs with a relatively small BN composition, it can transfer to the global column-like buckling of the whole BN-CNT with increasing strains. The critical strains for local shell-like and global column-like buckling decrease with increasing BN composition. In addition, critical strains and buckling modes of the global column-like buckling of BN-CNTs also strongly depend on the location of their BN domain. As a possible application of the buckling of BN-CNTs, we demonstrate that the BN-CNT can serve as a water channel integrated with a local natural valve using the local buckling of its BN domain.

7.
Proc Math Phys Eng Sci ; 471(2177): 20150072, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-27547104

RESUMO

In this paper, the snap-through buckling of an initially curved microbeam subject to an electrostatic force, accounting for fringing field effect, is investigated. The general governing equations of the curved microbeam are developed using Euler-Bernoulli beam theory and used to develop a new criterion for the snap-through buckling of that beam. The size effect of the microbeam is accounted for using the modified couple stress theory, and intermolecular effects, such as van der Waals and Casimir forces, are also included in our snap-through formulations. The snap-through governing equations are solved using Galerkin decomposition of the deflection. The results of our work enable us to carefully characterize the snap-through behaviour of the initially curved microbeam. They further reveal the significant effect of the beam size, and to a much lesser extent, the effect of fringing field and intermolecular forces, upon the snap-through criterion for the curved beam.

8.
Proc Math Phys Eng Sci ; 470(2162): 20130473, 2014 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-24511250

RESUMO

In this paper, we provide a unified and self-consistent treatment of a functionally graded material (FGM) microbeam with varying thermal conductivity subjected to non-uniform or uniform temperature field. Specifically, it is our objective to determine the effect of the microscopic size of the beam, the electrostatic gap, the temperature field and material property on the pull-in voltage of the microbeam under different boundary conditions. The non-uniform temperature field is obtained by integrating the steady-state heat conduction equation. The governing equations account for the microbeam size by introducing an internal material length-scale parameter that is based on the modified couple stress theory. Furthermore, it takes into account Casimir and van der Waals forces, and the associated electrostatic force with the first-order fringing field effects. The resulting nonlinear differential equations were converted to a coupled system of algebraic equations using the differential quadrature method. The outcome of our work shows the dramatic effect and dependence of the pull-in voltage of the FGM microbeam upon the temperature field, its gradient for a given boundary condition. Specifically, both uniform and non-uniform thermal loading can actuate the FGM microbeam even without an applied voltage. Our work also reveals that the non-uniform temperature field is more effective than the uniform temperature field in actuating a FGM cantilever-type microbeam. For the clamped-clamped case, care must be taken to account for the effective use of thermal loading in the design of microbeams. It is also observed that uniform thermal loading will lead to a reduction in the pull-in voltage of a FGM microbeam for all the three boundary conditions considered.

9.
Nanotechnology ; 22(48): 485704, 2011 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-22071680

RESUMO

We have developed an improved three-dimensional (3D) percolation model to investigate the effect of the alignment of carbon nanotubes (CNTs) on the electrical conductivity of nanocomposites. In this model, both intrinsic and contact resistances are considered, and a new method of resistor network recognition that employs periodically connective paths is developed. This method leads to a reduction in the size effect of the representative cuboid in our Monte Carlo simulations. With this new technique, we were able to effectively analyze the effects of the CNT alignment upon the electrical conductivity of nanocomposites. Our model predicted that the peak value of the conductivity occurs for partially aligned rather than perfectly aligned CNTs. It has also identified the value of the peak and the corresponding alignment for different volume fractions of CNTs. Our model works well for both multi-wall CNTs (MWCNTs) and single-wall CNTs (SWCNTs), and the numerical results show a quantitative agreement with existing experimental observations.


Assuntos
Modelos Químicos , Nanocompostos/química , Nanotubos de Carbono/química , Simulação por Computador , Condutividade Elétrica , Método de Monte Carlo , Reprodutibilidade dos Testes
10.
J Biomech Eng ; 133(2): 024501, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21280884

RESUMO

Silicone implants are used for prosthetic arthroplasty of metacarpophalangeal (MCP) joints severely damaged by rheumatoid arthritis. Different silicone elastomer MCP implant designs have been developed, including the Swanson and the NeuFlex implants. The goal of this study was to compare the in vitro mechanical behavior of Swanson and NeuFlex MCP joint implants. Three-dimensional (3D) finite element (FE) models of the silicone implants were modeled using the commercial software ANSYS and subjected to angular displacement from 0 deg to 90 deg. FE models were validated using mechanical tests of implants incrementally bent from 0 deg to 90 deg in a joint simulator. Swanson size 2 and 4 implants were compared with NeuFlex size 10 and 30 implants, respectively. Good agreement was observed throughout the range of motion for the flexion bending moment derived from 3D FE models and mechanical tests. From 30 deg to 90 deg, the Swanson 2 demonstrated a greater resistance to deformation than the NeuFlex 10 and required a greater bending moment for joint flexion. For larger implant sizes, the NeuFlex 30 had a steeper moment-displacement curve, but required a lower moment than the Swanson 4, due to implant preflexion. On average, the stress generated at the implant hinge from 30 deg to 90 deg was lower in the NeuFlex than in the Swanson. On average, starting from the neutral position of 30 deg for the preflexed NeuFlex implant, higher moments were required to extend the NeuFlex implants to 0 deg compared with the Swanson implants, which returned spontaneously to resting position. Implant toggling within the medullary canals was less in the NeuFlex than in the Swanson. The differential performance of these implants may be useful in implant selection based on the preoperative condition(s) of the joint and specific patient functional needs.


Assuntos
Análise de Elementos Finitos , Teste de Materiais/métodos , Articulação Metacarpofalângica , Próteses e Implantes , Silicones , Fenômenos Biomecânicos , Articulação Metacarpofalângica/fisiologia , Amplitude de Movimento Articular , Estresse Mecânico
11.
J Biomed Mater Res ; 55(1): 63-71, 2001 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11426399

RESUMO

The local mechanical environment around bone-interfacing implants determines, in large part, whether bone formation leading to functional osseointegration will occur. Previous attempts to relate local peri-implant tissue strains to tissue formation have not accounted for implant surface geometry, which has been shown to influence early tissue healing in vivo. Furthermore, the process by which mechanically regulated peri-implant bone formation occurs has not been considered previously. In the current study, we used a unit cell approach and the finite element method to predict the local tissue strains around porous-surfaced and plasma-sprayed implants, and compared the predictions to patterns of bone formation reported in earlier in vivo experiments. Based on the finite element predictions, we determined that appositional bone formation occurred when the magnitudes of the strain components at the tissue-host bone interface were <8%. Localized, de novo bone formation occurred when the distortional tissue strains were less than approximately 3%. Based on these threshold tissue strains, we propose a mechanoregulatory model to relate local tissue strains to the process of peri-implant bone formation. The mechanoregulatory model is novel in that it predicts both appositional and localized bone formation and its predictions are dependent on implant surface geometry. The model provides initial criteria with which the osseointegration potential of bone-interfacing implants may be evaluated, particularly under conditions of immediate or early loading.


Assuntos
Substitutos Ósseos , Osteogênese/fisiologia , Próteses e Implantes , Ligas , Animais , Fenômenos Biomecânicos , Cães , Mandíbula/cirurgia , Teste de Materiais , Estresse Mecânico , Propriedades de Superfície , Titânio
12.
J Orthop Res ; 19(2): 187-94, 2001 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11347689

RESUMO

Experimental evidence indicates that the surface geometry of bone-interfacing implants influences the nature and rate of tissues formed around implants. In a previously reported animal model study, we showed that non-functional, press-fitted porous-surfaced implants placed in rabbit femoral condyle sites osseointegrated more rapidly than plasma-sprayed implants. We hypothesized that the accelerated osseointegration observed with the porous-surfaced design was the result of this design providing a local mechanical environment that was more favourable for bone formation. In the present study, we tested this hypothesis using finite element analysis and homogenization methods to predict the local strains in the pre-mineralized tissues formed around porous-surfaced and plasma-sprayed implants. We found that, for loading perpendicular to the implant interface, the porous surface structure provided a large region that experienced low distortional and volumetric strains, whereas the plasma-sprayed implant provided little local strain protection to the healing tissue. The strain protected region, which was within the pores of the sintered porous surface layer. corresponded to the region where the difference in the amount of mineralization between the two implant designs was the greatest. Low distortional and volumetric strains are believed to favour osteogenesis, and therefore the model results provide initial support for the hypothesis that the porous-surfaced geometry provides a local mechanical environment that favours more rapid bone formation in certain situations.


Assuntos
Osseointegração/fisiologia , Próteses e Implantes , Animais , Calcificação Fisiológica , Materiais Revestidos Biocompatíveis , Desenho de Equipamento , Análise de Elementos Finitos , Matemática , Porosidade , Coelhos , Estresse Mecânico , Suporte de Carga
13.
Pharmazie ; 37(5): 352-4, 1982 May.
Artigo em Inglês | MEDLINE | ID: mdl-7111361

RESUMO

The condensation of cinnamaldehyde, thienyl and furyl acrolein with dimethyl succinate in the presence of potassium tert-butoxide, gives the corresponding acid-esters (la-c) (R1 = Me) as major products. These esters are further converted into cyclopentadiene and cyclopentadienone derivatives. Dicondensation products (2a-c) are also obtained. Furthermore, the correlation between the chemical structures of the studied compounds and their respective biological activities were discussed.


Assuntos
Anti-Infecciosos/síntese química , Ciclopentanos/síntese química , Antibacterianos , Bactérias/efeitos dos fármacos , Fenômenos Químicos , Química , Ciclopentanos/farmacologia , Fungos/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...