Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cells ; 11(7)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35406745

RESUMO

Dysfunction in the hippocampus-prefrontal cortex (H-PFC) circuit is a critical determinant of schizophrenia. Screening of pyridazinone-risperidone hybrids on this circuit revealed EGIS 11150 (S 36549). EGIS 11150 induced theta rhythm in hippocampal slice preparations in the stratum lacunosum molecular area of CA1, which was resistant to atropine and prazosin. EGIS 11150 enhanced H-PFC coherence, and increased the 8−9 Hz theta band of the EEG power spectrum (from 0.002 mg/kg i.p, at >30× lower doses than clozapine, and >100× for olanzapine, risperidone, or haloperidol). EGIS 11150 fully blocked the effects of phencyclidine (PCP) or ketamine on EEG. Inhibition of long-term potentiation (LTP) in H-PFC was blocked by platform stress, but was fully restored by EGIS 11150 (0.01 mg/kg i.p.), whereas clozapine (0.3 mg/kg ip) only partially restored LTP. EGIS 11150 has a unique electrophysiological profile, so phenotypical screening on H-PFC connectivity can reveal novel antipsychotics.


Assuntos
Antipsicóticos , Clozapina , Animais , Antipsicóticos/farmacologia , Clozapina/farmacologia , Hipocampo , Plasticidade Neuronal , Córtex Pré-Frontal , Ratos , Ratos Wistar , Risperidona/farmacologia
2.
Eur J Pharmacol ; 834: 118-125, 2018 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-30012500

RESUMO

This study examined the potential of the selective extra-synaptic α5-GABAA receptor inhibitor S44819 (Egis-13529) to improve cognitive performance in preclinical models of vascular cognitive impairment (VCI). Chronic hypoperfusion of the brain in mice was induced by permanent occlusion of the right common carotid artery (rUCO). rUCO induced impairments of cognitive function in the object recognition test (OR) and the rewarded T-maze (RTM). In both tests, a single oral treatment with S44819 (OR - 0.1-3 mg/kg, RTM - 1-3 mg/kg p.o.) significantly reduced the effect of rUCO. Long-term treatment with S44819 (1-10 mg/kg twice daily p.o. for 14 days), that was initiated 24 h after surgery and was followed by a 10- or 13-day wash-out period, fully prevented the decline of cognitive performance of rUCO mice. In rats, occlusion of the middle cerebral artery (MCA) for 30 min caused a significantly diminished performance in the OR. This was prevented by S44819 given p.o. 15 mg/kg twice daily for 8 days, starting 7 days after surgery and tested following a 7-day wash-out period. Taken together, S44819 markedly and stably improved reference and working memory impaired by rUCO in mice. In rats, the compound effectively suppressed the development of cognitive impairment after mild stroke. In conclusion, as longer-term administration led to a persistent reversal of the cognitive deficits, it appears that S44819 may have symptomatic, as well as disease-modifying effects in models of VCI. Proof of concept is therefore provided for testing S44819 in the therapy of VCI and post-stroke dementia in humans.


Assuntos
Benzodiazepinas/farmacologia , Demência Vascular/tratamento farmacológico , Antagonistas de Receptores de GABA-A/farmacologia , Oxazóis/farmacologia , Receptores de GABA-A/metabolismo , Animais , Benzodiazepinas/administração & dosagem , Benzodiazepinas/uso terapêutico , Cognição/efeitos dos fármacos , Demência Vascular/metabolismo , Demência Vascular/fisiopatologia , Modelos Animais de Doenças , Antagonistas de Receptores de GABA-A/administração & dosagem , Antagonistas de Receptores de GABA-A/uso terapêutico , Masculino , Camundongos , Oxazóis/administração & dosagem , Oxazóis/uso terapêutico , Ratos , Reconhecimento Psicológico/efeitos dos fármacos , Reconhecimento Psicológico/fisiologia
3.
Neuropharmacology ; 128: 408-415, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29109059

RESUMO

Gamma-amino butyric acid (GABA) is an abundant neurotransmitter in the CNS. GABAergic interneurons orchestrate pyramidal neurons in the cerebral cortex, and thus control learning and memory. Ionotropic receptors for GABA (GABAAR) are heteropentameric complexes of α, ß and γ integral membrane-protein subunits forming Cl- -channels operated by GABA, which are vital for brain function and are important drug targets. However, knowledge on how GABAAR bind GABA is controversial. Structural biology versus functional modelling combined with site-directed mutagenesis suggest markedly different roles for loop F of the extracellular domain of the α-subunit when complexed with GABA. Here, we report that contrary to the results of structural studies, loop F of the α-subunit controls the potency of GABA on GABAAR. We examined the effect of replacing a short, variable segment of loop F of the GABAA α5-subunit with the corresponding segment of the α2-subunit (GABAA5_LF2) and vice versa (GABAA2-LF5). When compared with their respective wild-type counterparts, GABAA5_LF2 receptors displayed enhanced sensitivity towards GABA, whilst in GABAA2-LF5 sensitivity was diminished. Mice homozygous for the genetic knock-in of the GABAA5_LF2 subunit showed a marked deficit in long- but not short-term object recognition memory. Working memory in place learning, spontaneous alternation and the rewarded T-maze were all normal. The deficit in long-term recognition memory was reversed by an α5-GABAA negative allosteric modulator compound. The data show that loop F governs GABA potency in a receptor isoform-specific manner in vitro. Moreover, this mechanism of ligand recognition appears to be operative in vivo and impacts cognitive performance.


Assuntos
Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Ligação Competitiva , Comportamento Exploratório/fisiologia , Células HEK293 , Humanos , Masculino , Aprendizagem em Labirinto/fisiologia , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Mutagênese Sítio-Dirigida , Mutação/genética , Técnicas de Patch-Clamp , Subunidades Proteicas/genética , Receptores de GABA-A/genética , Reconhecimento Psicológico/fisiologia , Relação Estrutura-Atividade , Fatores de Tempo , Transfecção , Ácido gama-Aminobutírico/farmacologia
4.
Eur J Pharmacol ; 798: 129-136, 2017 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-28153485

RESUMO

The neurotransmitter γ-amino butyric acid (GABA) has a fundamental role in CNS function and ionotropic (GABAA) receptors that mediate many of the actions of GABA are important therapeutic targets. This study reports the mechanism of action of novel GABAA antagonists based on a tricyclic oxazolo-2,3-benzodiazepine scaffold. These compounds are orthosteric antagonists of GABA on heteropentameric GABAA receptors of αxß2γ2 configuration expressed in HEK293 cells. In silico modelling predicted that the test compounds docked in the GABA binding-pocket and would interact with amino-acid residues in the α- and ß-subunit interface that are known to be important for the binding of GABA. Intriguingly, optimal docking also required an interaction with the non-conserved amino-terminal segment of Loop-F of the α-subunit. Testing of a compound with altered regiochemistry of the oxazolone moiety supported the model with respect to the conserved GABA-interacting residues in vitro as well as in vivo. The prediction regarding loop-F was examined by replacing the amino-terminal variable segment of loop-F of the α5-subunit with the corresponding residues in the α1- and α2-subunits. When tested with the novel inhibitors, the receptors formed by the modified α5-subunits displayed the pharmacologic phenotype of the source of loop-F. In summary, these data show that the variable amino-terminal segment of loop-F of the α-subunit determines the pharmacologic selectivity of the novel tricyclic inhibitors of GABAA receptors.


Assuntos
Benzodiazepinas/química , Benzodiazepinas/farmacologia , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/farmacologia , Subunidades Proteicas/metabolismo , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Benzodiazepinas/metabolismo , Ligação Competitiva , Simulação por Computador , Antagonistas de Receptores de GABA-A/metabolismo , Células HEK293 , Humanos , Simulação de Acoplamento Molecular , Oxazóis/química , Conformação Proteica , Subunidades Proteicas/química , Relação Estrutura-Atividade , Ácido gama-Aminobutírico/metabolismo
5.
Brain Res Bull ; 71(5): 501-7, 2007 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-17259019

RESUMO

Although levodopa is the current "gold standard" for treatment of Parkinson's disease, there has been disputation on whether AMPA receptor antagonists can be used as adjuvant therapy to improve the effects of levodopa. Systemic administration of levodopa, the precursor of dopamine, increases brain dopamine turnover rate and this elevated turnover is believed to be essential for successful treatment of Parkinson's disease. However, long-term treatment of patients with levodopa often leads to development of dyskinesia. Therefore, drugs that feature potentiation of dopamine turnover rate and are able to reduce daily levodopa dosages might be used as adjuvant in the treatment of patients suffering from Parkinson's disease. To investigate such combined treatment, we have examined the effects of two non-competitive AMPA receptor antagonists, GYKI-52466 and GYKI-53405, alone or in combination with levodopa on dopamine turnover rate in 6-hydroxydopamine-lesioned striatum of the rat. We found here that repeated administration of levodopa, added with the peripheral DOPA decarboxylase inhibitor carbidopa, increased dopamine turnover rate after lesioning the striatum with 6-hydroxydopamine. Moreover, combination of levodopa with GYKI-52466 or GYKI-53405 further increased dopamine turnover enhanced by levodopa administration while the AMPA receptor antagonists by themselves failed to influence striatal dopamine turnover. We concluded from the present data that potentiation observed between levodopa and AMPA receptor antagonists may reflect levodopa-sparing effects in clinical treatment indicating the therapeutic potential of such combination in the management of Parkinson's disease.


Assuntos
Benzodiazepinas/uso terapêutico , Corpo Estriado/efeitos dos fármacos , Dopamina/metabolismo , Transtornos Parkinsonianos/tratamento farmacológico , Receptores de AMPA/antagonistas & inibidores , Ácido 3,4-Di-Hidroxifenilacético/metabolismo , Análise de Variância , Animais , Corpo Estriado/metabolismo , Dopaminérgicos/administração & dosagem , Interações Medicamentosas , Lateralidade Funcional , Ácido Homovanílico/metabolismo , Levodopa/administração & dosagem , Masculino , Oxidopamina , Transtornos Parkinsonianos/induzido quimicamente , Transtornos Parkinsonianos/patologia , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...