Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Environ Qual ; 52(3): 537-548, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35182392

RESUMO

Watershed-scale hydrologic models are commonly used to assess the water quality effects of agricultural conservation practices that improve soil health (e.g., cover crops and no-till). However, models rarely account for how these practices (i.e., soil health practices) affect soil physical and functional properties such as water holding capacity and soil aggregate stability, which may, in turn, affect water quality. We introduce a method to represent changes in soil physical and functional properties caused by soil health practices in the Soil and Water Assessment Tool (SWAT) model. We used the SWAT model's default representation of winter cover crops and no-till and modified soil descriptive parameters to depict soil health practice effects on soil properties. We assumed that the soil health practices would increase soil organic carbon (SOC), a principal indicator of soil health, by 0.01 g C g-1 of soil and then estimated changes in other soil properties (e.g., water holding capacity) using SOC-based predictive equations and preceding literature. Results indicated that our soil property modifications had statistically significant effects on simulated hydrology and nutrient loss, though outputs were more substantially affected by the model's default representation of cover crops and no-till. Results also indicated that soil health practices can reduce nitrogen and total phosphorus loss but may increase dissolved reactive phosphorus loss. Our representation of soil health practices provides a more complete estimate of practice efficacy but underscores a need for additional observational data to verify results and guide further model improvements.


Assuntos
Hidrologia , Solo , Carbono , Agricultura/métodos , Nutrientes , Fósforo/análise
2.
Sci Total Environ ; 688: 1236-1251, 2019 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-31726554

RESUMO

Studies assessing the impact of subsurface drains on hydrology and nutrient yield in a changing climate are limited, specifically for Western Lake Erie Basin. This study aimed to evaluate the impact of changing climate on hydro-climatology and nutrient loadings in agricultural subsurface-drained areas on a watershed in northeastern Indiana. The study was conducted using a hydrologic model - the Soil and Water Assessment Tool (SWAT) - under two different greenhouse gas emission scenarios (RCP 4.5 and RCP 8.5). Based on analysis, annual subsurface drain flow totals could increase by 70% with respect to the baseline by the end of the 21st century. Surface runoff could increase by 10 to 140% and changes are expected to be greater under RCP 8.5. Soluble phosphorus yield over the basin in a year via subsurface drains could decrease by 30 to 60% under either emission scenarios. Annual total soluble phosphorus yield (soluble phosphorus loading to stream) from subsurface drains and surface runoff could vary from 0.041 to 0.058 kg/ha under RCP 4.5 and 0.035 to 0.064 kg/ha under RCP 8.5 by the end of the 21st century while the values from the baseline model were 0.051 kg/ha. This was attributable to the fact that future climate could have a greater increase in surface runoff than subsurface drain flow based on analysis of the different climate scenarios. Outputs from individual climate model data rather than ensembles provided a band of influence of watershed responses, while outputs from different timelines provided details for evaluating management practice suitability with respect to anticipated differences in climate. Results provide valuable information for stakeholders and policy makers for planning management practices to protect water quality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...