Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Pharmacol ; 14: 1085013, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37089941

RESUMO

Medicinal plants play a key role in protection of chronic non-communicable ailments like diabetes, hypertension and dyslipidemia. Berberis brandisiana Ahrendt (Berberidaceae) is traditionally used to treat diabetes, liver problems, wounds, arthritis, infections, swelling and tumors. It is also known to be enriched with multiple phytoconstituents including berbamine, berberine, quercetin, gallic acid, caffeic acid, vanillic acid, benzoic acid, chlorogenic acid, syringic acid, p-coumaric acid, m-coumaric acid and ferulic acid. The efficacy of B. brandisiana has not been established yet in diabetes. This study has been planned to assess the antidiabetic activity of B. brandisiana in high fat diet and streptozotocin (HFD/STZ)-induced diabetes using animals. Administration of aqueous methanolic extract of B. brandisiana (AMEBB) and berbamine (Berb) for 8 weeks caused a dose dependent marked (p < 0.01) rise in serum insulin and HDL levels with a significant decline (p < 0.01) in glucose, triglycerides, glycosylated hemoglobin (HbA1c), cholesterol, LDL, LFTs and RFTs levels when compared with only HFD/STZ-administered rats. AMEBB and Berb also modulated inflammatory biomarkers (TNF-α, IL-6) and adipocytokines (leptin, adiponectin and chemerin). AMEBB (150 mg/kg and 300 mg/kg) and Berb (80 mg/kg and 160 mg/kg) treated rats showed a marked increase (p < 0.001) in catalase levels (Units/mg) in pancreas (42.4 ± 0.24, 47.4 ± 0.51), (38.2 ± 0.583, 48.6 ± 1.03) and liver (52 ± 1.41, 63.2 ± 0.51), (57.2 ± 0.58, 61.6 ± 1.24) and superoxide dismutase levels (Units/mg) in pancreas (34.8 ± 1.46, 38.2 ± 0.58), (33.2 ± 0.80, 40.4 ± 1.96) and liver (31.8 ± 1.52, 36.8 ± 0.96), (30 ± 0.70, 38.4 ± 0.81),respectively while a significant (p < 0.01) decrease in serum melondialdehyde levels (nmol/g) in pancreas (7.34 ± 0.17, 6.22 ± 0.22), (7.34 ± 0.20, 6.34 ± 0.11) and liver (9.08 ± 0.31,8.18 ± 0.29), (9.34 ± 0.10, 8.86 ± 0.24) compared to the data of only HFD/STZ-fed rats. Histopathological studies of pancreas, liver, kidney, heart and aorta revealed restoration of normal tissue architect in AMEBB and Berb treated rats. When mRNA expressions of candidate genes were assessed, AMEBB and Berb showed upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17. These findings suggest that AMEBB and Berb possess antidiabetic activity, possibly due to its effect on oxidative stress, glucose metabolism, inflammatory biomarkers and adipocytokines levels. Further upregulation of IRS-1, SIRT1, GLUT-4 and downregulation of ADAM17, demonstrated its potential impact on glucose homeostasis, insulin resistance and chronic inflammatory markers. Thus, this study provides support to the medicinal use of B. brandisiana and berbamine in diabetes.

2.
Front Pharmacol ; 14: 1097407, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37033655

RESUMO

Caryopteris odorata (D. Don) B.L. Robinson (Verbenaceae family) is an aromaric shrub traditionally used to treat diabetes and related pathologies (diabetic foot ulcer), cancer/tumors, wound healing, and inflammation. It is enriched with flavonoids and phenolics like coumarins, quercetin, gallic acid, coumaric acid, stigmasterol, α-tocopherol, and iridoids. C. odorata has been reported as having α-glucosidase, anti-inflammatory, and anti-oxidant properties. Its effectiveness in preventing cardiometabolic syndrome has not yet been assessed. This study aims to investigate the potential efficacy of C. odorata and coumarin for characteristic features of cardiometabolic syndrome (CMS), including obesity, dyslipidemia, hyperglycemia, insulin resistance, and hypertension by using high-refined carbohydrate-high fat-cholesterol (HRCHFC)-loaded feed-fed rats. Chronic administration of C. odorata and coumarin for 6 weeks revealed a marked attenuation in body and organ weights, with a consistent decline in feed intake compared to HRCHFC diet fed rats. The test materials also caused a significant reduction in the blood pressure (systolic, diastolic, and mean) and heart rate of HRCHFC-diet fed rats. Improved glucose tolerance and insulin sensitivity tests were also observed in test material administered rats compare to only HRCHFC-diet fed rats. C. odorata and coumarin-treated animals produced a marked decline in serum FBG, TC, TG, LFTs, and RFTs, while an increase in serum HDL-C levels was noticed. C. odorata and coumarin also significantly modulated inflammatory biomarkers (TNFα, IL-6), adipokines (leptin, adiponectin, and chemerin), and HMG-CoA reductase levels, indicating prominent anti-inflammatory, cholesterol-lowering, and anti-hyperglycemic potential. Administration of C. odorata and coumarin exhibited a marked improvement in oxidative stress markers (CAT, SOD, and MDA). Histopathological analysis of liver, heart, kidney, pancreas, aorta, and fat tissues showed a revival of normal tissue architecture in C. odorata and coumarin-treated rats compared to only HRCHFC-diet fed rats. These results suggest that C. odorata and coumarin possess beneficial effects against the characteristic features of CMS (obesity, insulin resistance, hypertension, and dyslipidemia) in HRCHFC feed-administered rats. These effects were possibly mediated through improved adipokines, glucose tolerance, and insulin sensitivity, the attenuation of HMG-CoA reductase and inflammatory biomarkers, and modulated oxidative stress biomarkers. This study thus demonstrates a rationale for the therapeutic potential of C. odorata and coumarin in CMS.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...