Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22283723

RESUMO

The Omicron BQ.1.1 variant is now the major SARS-CoV-2 circulating strain in many countries. Because of the many mutations present in its Spike glycoprotein, this variant is resistant to humoral responses elicited by monovalent mRNA vaccines. With the goal to improve immune responses against Omicron subvariants, bivalent mRNA vaccines have recently been approved in several countries. In this study, we measure the capacity of plasma from vaccinated individuals, before and after a fourth dose of mono- or bivalent mRNA vaccine, to recognize and neutralize the ancestral (D614G) and the BQ.1.1 Spikes. Before and after the fourth dose, we observe a significantly better recognition and neutralization of the ancestral Spike. We also observe that fourth-dose vaccinated individuals who have been recently infected recognize and neutralize better the BQ.1.1 Spike, independently of the mRNA vaccine used, than donors who have never been infected or have an older infection. Our study supports that hybrid immunity, generated by vaccination and a recent infection, induces higher humoral responses than vaccination alone, independently of the mRNA vaccine used.

2.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-506622

RESUMO

Cellular immune defects associated with suboptimal responses to SARS-CoV-2 mRNA vaccination in people receiving hemodialysis (HD) are poorly understood. We longitudinally analyzed antibody, B cell, CD4+ and CD8+ T cell vaccine responses in 27 HD patients and 26 low-risk control individuals (CI). The first two doses elicit weaker B cell and CD8+ T cell responses in HD than in CI, while CD4+ T cell responses are quantitatively similar. In HD, a third dose robustly boosts B cell responses, leads to convergent CD8+ T cell responses and enhances comparatively more Thelper (TH) immunity. Unsupervised clustering of single-cell features reveals phenotypic and functional shifts over time and between cohorts. The third dose attenuates some features of TH cells in HD (TNF/IL-2 skewing), while others (CCR6, CXCR6, PD-1 and HLA-DR overexpression) persist. Therefore, a third vaccine dose is critical to achieve robust multifaceted immunity in hemodialysis patients, although some distinct TH characteristics endure.

3.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22278386

RESUMO

Several SARS-CoV-2 Omicron subvariants have recently emerged, becoming the dominant circulating strains in many countries. These variants contain a large number of mutations in their Spike glycoprotein, raising concerns about vaccine efficacy. In this study, we evaluate the ability of plasma from a cohort of individuals that received three doses of mRNA vaccine to recognize and neutralize these Omicron subvariant Spikes. We observed that BA.4/5 and BQ.1.1 Spikes are markedly less recognized and neutralized compared to the D614G and the other Omicron subvariant Spikes tested. Also, individuals who have been infected before or after vaccination present better humoral responses than SARS-CoV-2 naive vaccinated individuals, thus indicating that hybrid immunity generates better humoral responses against these subvariants.

4.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-501708

RESUMO

Neutralizing antibodies (NAbs) hold great promise for clinical interventions against SARS-CoV- 2 variants of concern (VOCs). Understanding NAb epitope-dependent antiviral mechanisms is crucial for developing vaccines and therapeutics against VOCs. Here we characterized two potent NAbs, EH3 and EH8, isolated from an unvaccinated pediatric patient with exceptional plasma neutralization activity. EH3 and EH8 cross-neutralize the early VOCs and mediate strong Fc-dependent effector activity in vitro. Structural analyses of EH3 and EH8 in complex with the receptor-binding domain (RBD) revealed the molecular determinants of the epitope-driven protection and VOC-evasion. While EH3 represents the prevalent IGHV3-53 NAb whose epitope substantially overlaps with the ACE2 binding site, EH8 recognizes a narrow epitope exposed in both RBD-up and RBD-down conformations. When tested in vivo, a single-dose prophylactic administration of EH3 fully protected stringent K18-hACE2 mice from lethal challenge with Delta VOC. Our study demonstrates that protective NAbs responses converge in pediatric and adult SARS-CoV-2 patients.

5.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-481107

RESUMO

To infect cells, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) binds to angiotensin converting enzyme 2 (ACE2) via its spike glycoprotein (S), delivering its genome upon S-mediated membrane fusion. SARS-CoV-2 uses two distinct entry pathways: 1) a surface, serine protease-dependent or 2) an endosomal, cysteine protease-dependent pathway. In investigating serine protease-independent cell-cell fusion, we found that the matrix metalloproteinases (MMPs), MMP2/9, can activate SARS-CoV-2 S fusion activity, but not that of SARS-CoV-1. Importantly, metalloproteinase activation of SARS-CoV-2 S represents a third entry pathway in cells expressing high MMP levels. This route of entry required cleavage at the S1/S2 junction in viral producer cells and differential processing of variants of concern S dictated its usage. In addition, metalloproteinase inhibitors reduced replicative Alpha infection and abrogated syncytia formation. Finally, we found that the Omicron S exhibit reduced metalloproteinase-dependent fusion and viral entry. Taken together, we identified a MMP2/9-dependent mode of activation of SARS-CoV-2 S. As MMP2/9 are released during inflammation and severe COVID-19, they may play important roles in SARS-CoV-2 S-mediated cytopathic effects, tropism, and disease outcome.

6.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-22269922

RESUMO

Regional connectivity and land-based travel have been identified as important drivers of SARS-CoV-2 transmission. However, the generalizability of this finding is understudied outside of well-sampled, highly connected regions such as Europe. In this study, we investigated the relative contributions of regional and intercontinental connectivity to the source-sink dynamics of SARS-CoV-2 for Jordan and the wider Middle East. By integrating genomic, epidemiological and travel data we show that the source of introductions into Jordan was dynamic across 2020, shifting from intercontinental seeding from Europe in the early pandemic to more regional seeding for the period travel restrictions were in place. We show that land-based travel, particularly freight transport, drove introduction risk during the period of travel restrictions. Consistently, high regional connectivity and land-based travel also disproportionately drove Jordans export risk to other Middle Eastern countries. Our findings emphasize regional connectedness and land-based travel as drivers of viral transmission in the Middle East. This demonstrates that strategies aiming to stop or slow the spread of viral introductions (including new variants) with travel restrictions need to prioritize risk from land-based travel alongside intercontinental air travel to be effective. HighlightsO_LIRegional connectivity drove SARS-CoV-2 introduction risk in Jordan during the period travel restrictions were in place in genomic and travel data. C_LIO_LILand-based travel rather than air travel disproportionately drove introduction risk during travel restrictions. C_LIO_LIHigh regional connectivity disproportionately drove Jordans export risk, with significant contribution from land-based travel. C_LIO_LIRegional transmission dynamics were underestimated in genomic data due to unrepresentative sampling. C_LI

7.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-473317

RESUMO

Spacing of the BNT162b2 mRNA doses beyond 3 weeks raised concerns about vaccine efficacy. We longitudinally analyzed B cell, T cell and humoral responses to two BNT162b2 mRNA doses administered 16 weeks apart in 53 SARS-CoV-2 naive and previously-infected donors. This regimen elicited robust RBD-specific B cell responses whose kinetics differed between cohorts, the second dose leading to increased magnitude in naive participants only. While boosting did not increase magnitude of CD4+ T cell responses further compared to the first dose, unsupervised clustering analyses of single-cell features revealed phenotypic and functional shifts over time and between cohorts. Integrated analysis showed longitudinal immune component-specific associations, with early Thelper responses post-first dose correlating with B cell responses after the second dose, and memory Thelper generated between doses correlating with CD8 T cell responses after boosting. Therefore, boosting elicits a robust cellular recall response after the 16-week interval, indicating functional immune memory.

8.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21263532

RESUMO

While the standard regimen of the BNT162b2 mRNA vaccine includes two doses administered three weeks apart, some public health authorities decided to space them, raising concerns about vaccine efficacy. Here, we analyzed longitudinal humoral responses including antibody binding, Fc-mediated effector functions and neutralizing activity against the D614G strain but also variants of concern and SARS-CoV-1 in a cohort of SARS-CoV-2 naive and previously infected individuals, with an interval of sixteen weeks between the two doses. While the administration of a second dose to previously infected individuals did not significantly improve humoral responses, we observed a significant increase of humoral responses in naive individuals after the 16-weeks delayed second shot, achieving similar levels as in previously infected individuals. We compared these responses to those elicited in individuals receiving a short (4-weeks) dose interval. For the naive donors, these responses were superior to those elicited by the short dose interval.

9.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-459408

RESUMO

Emerging evidence in animal models indicate that both neutralizing activity and Fc- mediated effector functions of neutralizing antibodies contribute to protection against SARS-CoV-2. It is unclear if antibody effector functions alone could protect against SARS-CoV-2. Here we isolated CV3-13, a non-neutralizing antibody from a convalescent individual with potent Fc-mediated effector functions that targeted the N- terminal domain (NTD) of SARS-CoV-2 Spike. The cryo-EM structure of CV3-13 in complex with SAR-CoV-2 spike revealed that the antibody bound from a distinct angle of approach to a novel NTD epitope that partially overlapped with a frequently mutated NTD supersite in SARS-CoV-2 variants. While CV3-13 did not alter the replication dynamics of SARS-CoV-2 in a K18-hACE2 transgenic mouse model, an Fc-enhanced CV3-13 significantly delayed neuroinvasion and death in prophylactic settings. Thus, we demonstrate that efficient Fc-mediated effector functions can contribute to the in vivo efficacy of anti-SARS-CoV-2 monoclonal antibodies in the absence of neutralization.

10.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-451812

RESUMO

The seasonal nature in the outbreaks of respiratory viral infections with increased transmission during low temperatures has been well established. The current COVID-19 pandemic makes no exception, and temperature has been suggested to play a role on the viability and transmissibility of SARS-CoV-2. The receptor binding domain (RBD) of the Spike glycoprotein binds to the angiotensin-converting enzyme 2 (ACE2) to initiate viral fusion. Studying the effect of temperature on the receptor-Spike interaction, we observed a significant and stepwise increase in RBD-ACE2 affinity at low temperatures, resulting in slower dissociation kinetics. This translated into enhanced interaction of the full Spike to ACE2 receptor and higher viral attachment at low temperatures. Interestingly, the RBD N501Y mutation, present in emerging variants of concern (VOCs) that are fueling the pandemic worldwide, bypassed this requirement. This data suggests that the acquisition of N501Y reflects an adaptation to warmer climates, a hypothesis that remains to be tested.

11.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21254652

RESUMO

BackgroundPatients receiving in-center hemodialysis (HD) are at high risk of exposure to SARS-CoV-2 with high mortality, and response to vaccination is uncertain. MethodsWe obtained serial plasma from 58 HD patients and 32 health-care workers (HCW) before and after vaccination with one dose of the BNT162b2 mRNA vaccine; as well as convalescent plasma from 11 HD patients who survived COVID-19. Anti-RBD (region binding domain of the SARS-CoV-2 Spike protein) IgG and IgM levels were measured by ELISA. Groups were stratified by evidence of prior SARS-CoV-2 infection. ResultsIn HD patients without prior SARS-CoV-2, antiRBD levels were significantly lower at 4 and 8 weeks after vaccination, compared to in HCWs after 3 weeks (p<0.001), and to convalescent plasma (p=0.002). Anti-RBD IgG was non-detectable in 29/46 (63%) of HD, compared to 1/16 (6%) of HCWs (p<0.0001). No patient with non-detectable levels at 4 weeks developed antiRBD by 8 weeks. In HD patients with prior SARS-CoV-2, mean 8-week anti-RBD IgG levels were similar to controls at 3 weeks (p=0.16), and to convalescent plasma (p=0.45). No patients reported symptoms 7 days after vaccination on a standardized questionnaire. InterpretationWhile the BNT162b2 vaccine was well-tolerated in hemodialysis patients, a single dose failed to elicit a humoral immune response in the majority of SARS-CoV-2 naive patients even after prolonged observation. In those with prior SARS-CoV-2 infection, the humoral response after vaccination was delayed. Whether HD patients develop T-cell responses requires further study. Until then, we advise the second dose be administered to all HD patients at the recommended 3-week time interval, and that rigorous SARS-CoV-2 infection prevention and control measures be continued in dialysis units until vaccine efficacy is proven.

12.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-436337

RESUMO

Neutralizing antibodies (NAbs) are effective in treating COVID-19 but the mechanism of immune protection is not fully understood. Here, we applied live bioluminescence imaging (BLI) to monitor the real-time effects of NAb treatment in prophylaxis and therapy of K18-hACE2 mice intranasally infected with SARS-CoV-2-nanoluciferase. We could visualize virus spread sequentially from the nasal cavity to the lungs and thereafter systemically to various organs including the brain, which culminated in death. Highly potent NAbs from a COVID-19 convalescent subject prevented, and also effectively resolved, established infection when administered within three days. In addition to direct Fab-mediated neutralization, Fc effector interactions of NAbs with monocytes, neutrophils and natural killer cells were required to effectively dampen inflammatory responses and limit immunopathology. Our study highlights that both Fab and Fc effector functions of NAbs are essential for optimal in vivo efficacy against SARS-CoV-2.

13.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-435972

RESUMO

The standard dosing of the Pfizer/BioNTech BNT162b2 mRNA vaccine validated in clinical trials includes two doses administered three weeks apart. While the decision by some public health authorities to space the doses because of limiting supply has raised concerns about vaccine efficacy, data indicate that a single dose is up to 90% effective starting 14 days after its administration. We analyzed humoral and T cells responses three weeks after a single dose of this mRNA vaccine. Despite the proven efficacy of the vaccine at this time point, no neutralizing activity were elicited in SARS-CoV-2 naive individuals. However, we detected strong anti-receptor binding domain (RBD) and Spike antibodies with Fc-mediated effector functions and cellular responses dominated by the CD4+ T cell component. A single dose of this mRNA vaccine to individuals previously infected by SARS-CoV-2 boosted all humoral and T cell responses measured, with strong correlations between T helper and antibody immunity. Neutralizing responses were increased in both potency and breadth, with distinctive capacity to neutralize emerging variant strains. Our results highlight the importance of vaccinating uninfected and previously-infected individuals and shed new light into the potential role of Fc-mediated effector functions and T cell responses in vaccine efficacy. They also provide support to spacing the doses of two-vaccine regimens to vaccinate a larger pool of the population in the context of vaccine scarcity against SARS-CoV-2.

14.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21253907

RESUMO

Despite advances in COVID-19 management, it is unclear how to recognize patients who evolve towards death. This would allow for better risk stratification and targeting for early interventions. However, the explosive increase in correlates of COVID-19 severity complicates biomarker prioritisation. To identify early biological predictors of mortality, we performed an immunovirological assessment (SARS-CoV-2 viral RNA, cytokines and tissue injury markers, antibody responses) on plasma samples collected from 144 hospitalised COVID-19 patients 11 days after symptom onset and used to test models predicting mortality within 60 days of symptom onset. In the discovery cohort (n=61, 13 fatalities), high SARS-CoV-2 vRNA, low RBD-specific IgG levels, low SARS-CoV-2-specific antibody-dependent cellular cytotoxicity, and elevated levels of several cytokines and lung injury markers were strongly associated with increased mortality in the entire cohort and the subgroup on mechanical ventilation. Model selection revealed that a three-variable model of vRNA, age and sex was very robust at identifying patients who will succumb to COVID-19 (AUC=0.86, adjusted HR for log-transformed vRNA=3.5; 95% CI: 2.0-6.0). This model remained robust in an independent validation cohort (n=83, AUC=0.85). Quantification of plasma SARS-CoV-2 RNA can help understand the heterogeneity of disease trajectories and identify patients who may benefit from new therapies.

15.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-428097

RESUMO

Functional and lasting immune responses to the novel coronavirus (SARS-CoV-2) are currently under intense investigation as antibody titers in plasma have been shown to decline during convalescence. Since the absence of antibodies does not equate to absence of immune memory, we sought to determine the presence of SARS-CoV-2-specific memory B cells in COVID-19 convalescent patients. In this study, we report on the evolution of the overall humoral immune responses on 101 blood samples obtained from 32 COVID-19 convalescent patients between 16 and 233 days post-symptom onset. Our observations indicate that anti-Spike and anti-RBD IgM in plasma decay rapidly, whereas the reduction of IgG is less prominent. Neutralizing activity in convalescent plasma declines rapidly compared to Fc-effector functions. Concomitantly, the frequencies of RBD-specific IgM+ B cells wane significantly when compared to RBD-specific IgG+ B cells, which increase over time, and the number of IgG+ memory B cells which remain stable thereafter for up to 8 months after symptoms onset. With the recent approval of highly effective vaccines for COVID-19, data on the persistence of immune responses are of central importance. Even though overall circulating SARS-CoV-2 Spike-specific antibodies contract over time during convalescence, we demonstrate that RBD-specific B cells increase and persist up to 8 months post symptom onset. We also observe modest increases in RBD-specific IgG+ memory B cells and importantly, detectable IgG and sustained Fc-effector activity in plasma over the 8-month period. Our results add to the current understanding of immune memory following SARS-CoV-2 infection, which is critical for the prevention of secondary infections, vaccine efficacy and herd immunity against COVID-19.

16.
Preprint em Inglês | medRxiv | ID: ppmedrxiv-21250325

RESUMO

BackgroundSARS-CoV-2 surrogate neutralization assays that obviate the need for viral culture offer substantial advantages regarding throughput and cost. The cPass SARS-CoV-2 Neutralization Antibody Detection Kit (Genscript) is the first such commercially available assay, detecting antibodies that block RBD/ACE-2 interaction. We aimed to evaluate cPass to inform its use and assess its added value compared to anti-RBD ELISA assays. MethodsSerum reference panels comprising 205 specimens were used to compare cPass to plaque-reduction neutralization test (PRNT) and a pseudotyped lentiviral neutralization (PLV) assay for detection of neutralizing antibodies. We assessed the correlation of cPass with an ELISA detecting anti-RBD IgG, IgM, and IgA antibodies at a single timepoint and across intervals from onset of symptoms of SARS-CoV-2 infection. ResultsCompared to PRNT-50, cPass sensitivity ranged from 77% - 100% and specificity was 95% - 100%. Sensitivity was also high compared to the pseudotyped lentiviral neutralization assay (93% [95%CI 85-97]), but specificity was lower (58% [95%CI 48-67]). Highest agreement between cPass and ELISA was for anti-RBD IgG (r=0.823). Against the pseudotyped lentiviral neutralization assay, anti-RBD IgG sensitivity (99% [95%CI 94-100]) was very similar to that of cPass, but overall specificity was lower (37% [95%CI 28-47]). Against PRNT-50, results of cPass and anti-RBD IgG were nearly identical. ConclusionsThe added value of cPass compared to an IgG anti-RBD ELISA was modest.

17.
Preprint em Inglês | bioRxiv | ID: ppbiorxiv-140244

RESUMO

The SARS-CoV-2 virus is responsible for the current worldwide coronavirus disease 2019 (COVID-19) pandemic, infecting millions of people and causing hundreds of thousands of deaths. The Spike glycoprotein of SARS-CoV-2 mediates viral entry and is the main target for neutralizing antibodies. Understanding the antibody response directed against SARS-CoV-2 is crucial for the development of vaccine, therapeutic and public health interventions. Here we performed a cross-sectional study on 106 SARS-CoV-2-infected individuals to evaluate humoral responses against the SARS-CoV-2 Spike. The vast majority of infected individuals elicited anti-Spike antibodies within 2 weeks after the onset of symptoms. The levels of receptor-binding domain (RBD)-specific IgG persisted overtime, while the levels of anti-RBD IgM decreased after symptoms resolution. Some of the elicited antibodies cross-reacted with other human coronaviruses in a genus-restrictive manner. While most of individuals developed neutralizing antibodies within the first two weeks of infection, the level of neutralizing activity was significantly decreased over time. Our results highlight the importance of studying the persistence of neutralizing activity upon natural SARS-CoV-2 infection.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...